Multi-label Feature Selection Algorithm Based on Label Pairwise Ranking Comparison Transformation

被引:0
|
作者
Xu, Haotian [1 ]
Xu, Lingyu [1 ]
机构
[1] Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label classification refers to the learning problem that a single training sample possibly has multiple labels at the same time. Many real world applications consist of high-dimensional feature vectors, which generally involve some irrelevant and redundant features. This possibly reduces classification performance and increases computational costs. Therefore, feature selection becomes an indispensable pre-processing step. Nowadays filter-type feature selection algorithms based on problem transformation strategies (for example, binary relevance) have attracted more attention due to their high computational efficiency and good classification performance. In this paper, according to the definition of ranking loss, we propose a label pairwise comparison transformation method (PCT), which converts each original multi-label sample into multiple samples with same feature vectors and different label vectors. Further, when PCT is combined with chi-square statistics, we introduce a fast implementation procedure, whose time complexity is approximated to that of binary relevance method. The experimental results of four text data sets show that our proposed algorithm outperforms five existing filter-type feature selection techniques based on problem transformation strategies according to six instance-based evaluation measures.
引用
收藏
页码:1210 / 1217
页数:8
相关论文
共 50 条
  • [1] Multi-label feature selection via joint label enhancement and pairwise label correlations
    Jinghua Liu
    Songwei Yang
    Yaojin Lin
    Chenxi Wang
    Cheng Wang
    Jixiang Du
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3943 - 3964
  • [2] Multi-label feature selection via joint label enhancement and pairwise label correlations
    Liu, Jinghua
    Yang, Songwei
    Lin, Yaojin
    Wang, Chenxi
    Wang, Cheng
    Du, Jixiang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (11) : 3943 - 3964
  • [3] Dynamic multi-label feature selection algorithm based on label importance and label correlation
    Chen, Weiliang
    Sun, Xiao
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (08) : 3379 - 3396
  • [4] Multi-label feature selection based on label correlations and feature redundancy
    Fan, Yuling
    Chen, Baihua
    Huang, Weiqin
    Liu, Jinghua
    Weng, Wei
    Lan, Weiyao
    KNOWLEDGE-BASED SYSTEMS, 2022, 241
  • [5] Multi-label feature selection based on label distribution and feature complementarity
    Qian, Wenbin
    Long, Xuandong
    Wang, Yinglong
    Xie, Yonghong
    APPLIED SOFT COMPUTING, 2020, 90
  • [6] Multi-label feature selection algorithm based on information entropy
    Zhang, Zhenhai
    Li, Shining
    Li, Zhigang
    Chen, Hao
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2013, 50 (06): : 1177 - 1184
  • [7] Multi-label feature selection based on correlation label enhancement
    He, Zhuoxin
    Lin, Yaojin
    Wang, Chenxi
    Guo, Lei
    Ding, Weiping
    INFORMATION SCIENCES, 2023, 647
  • [8] Multi-label feature selection based on the division of label topics
    Zhang, Ping
    Gao, Wanfu
    Hu, Juncheng
    Li, Yonghao
    INFORMATION SCIENCES, 2021, 553 : 129 - 153
  • [9] Label Construction for Multi-label Feature Selection
    Spolaor, Newton
    Monard, Maria Carolina
    Tsoumakas, Grigorios
    Lee, Huei Diana
    2014 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2014, : 247 - 252
  • [10] Fast multi-label feature selection based on information-theoretic feature ranking
    Lee, Jaesung
    Kim, Dae-Won
    PATTERN RECOGNITION, 2015, 48 (09) : 2761 - 2771