On logarithmic smoothing of the maximum function

被引:0
|
作者
Vazquez, FG [1 ]
Günzel, H
Jongen, HT
机构
[1] Univ Americas Puebla, Dept Math & Phys, Cholula 72820, Mexico
[2] Rhein Westfal TH Aachen, Dept Math C, D-52056 Aachen, Germany
关键词
maximum function; logarithmic barrier function; interior approximation; stationary point; Morse index;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the maximum function f resulting from a finite number of smooth functions. The logarithmic barrier function of the epigraph of f gives rise to a smooth approximation g(epsilon) of f itself, where epsilon > 0 denotes the approximation parameter. The one-parametric family g(epsilon) converges - relative to a compact subset - uniformly to the function f as epsilon tends to zero. Under nondegeneracy assumptions we show that the stationary points of g(epsilon) and f correspond to each other, and that their respective Morse indices coincide. The latter correspondence is obtained by establishing smooth curves x(epsilon) of stationary points for g(epsilon), where each x(epsilon) converges to the corresponding stationary point of f as epsilon tends to zero. In case of a strongly unique local minimizer, we show that the nondegeneracy assumption may be relaxed in order to obtain a smooth curve x(epsilon).
引用
收藏
页码:209 / 220
页数:12
相关论文
共 50 条
  • [1] On Logarithmic Smoothing of the Maximum Function
    Guerra Vazquez F.
    Günzel H.
    Jongen H.Th.
    Annals of Operations Research, 2001, 101 (1-4) : 209 - 220
  • [2] Smooth Maximum Unit: Smooth Activation Function for Deep Networks using Smoothing Maximum Technique
    Biswas, Koushik
    Kumar, Sandeep
    Banerjee, Shilpak
    Pandey, Ashish Kumar
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 784 - 793
  • [3] Available, transfer capability calculation using a smoothing pointwise maximum function
    Tong, Xiaojiao
    Wu, Felix F.
    Qi, Liqun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (01) : 450 - 462
  • [4] Smoothing in Maximum Quantum Entropy
    Wallstrom, TC
    MAXIMUM ENTROPY AND BAYESIAN METHODS - PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL WORKSHOP ON MAXIMUM ENTROPY AND BAYESIAN METHODS, SANTA BARBARA, CALIFORNIA, U.S.A., 1993, 1996, 62 : 157 - 159
  • [5] Logarithmic Function
    王雷
    中学生数学, 2009, (07) : 50 - 50
  • [6] ON INTERIOR LOGARITHMIC SMOOTHING AND STRONGLY STABLE STATIONARY POINTS
    Jongen, Hubertus Th.
    Rueckmann, Jan-J.
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) : 2137 - 2156
  • [7] SPLINES AND LOGARITHMIC FUNCTION
    NEWMAN, DJ
    SCHOENBERG, IJ
    PACIFIC JOURNAL OF MATHEMATICS, 1975, 61 (01) : 241 - 258
  • [8] The compound logarithmic function
    Gu, Zhendong
    Sun, Daochun
    MATHEMATICA SLOVACA, 2013, 63 (03) : 513 - 520
  • [9] LOGARITHMIC FUNCTION GENERATOR
    不详
    INSTRUMENTATION TECHNOLOGY, 1976, 23 (04): : 58 - 58
  • [10] A discrete logarithmic function and Lyapunov function
    Isojima, Shin
    Suzuki, Seiichiro
    JSIAM LETTERS, 2022, 14 : 139 - 142