Spindle-configurations of skew lines

被引:0
|
作者
Bacher, Roland [1 ]
Garber, David [2 ]
机构
[1] Inst Fourier, F-38402 St Martin Dheres, France
[2] Holon Inst Technol, Dept Appl Math, Sch Sci, IL-58102 Holon, Israel
来源
GEOMETRY & TOPOLOGY | 2007年 / 11卷
关键词
D O I
10.2140/gt.2007.11.1049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is a contribution to the classification of configurations of skew lines, as studied mainly by Viro and his collaborators. We prove an improvement of a conjecture made by Crapo and Penne which characterizes isotopy classes of skew configurations with spindle-structure. By this result we can define an invariant, spindlegenus, for spindle-configurations.
引用
收藏
页码:1049 / 1081
页数:33
相关论文
共 50 条
  • [1] TETRAHEDRA, SKEW LINES, AND VOLUME
    SMITH, J
    HENDERSON, M
    [J]. COLLEGE MATHEMATICS JOURNAL, 1985, 16 (02): : 138 - 139
  • [2] NOTE ON CONFIGURATIONS OF LINES
    LEMMENS, PWH
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1979, 82 (03): : 317 - 321
  • [3] AS-configurations and skew-translation generalised quadrangles
    Bamberg, John
    Glasby, S. P.
    Swartz, Eric
    [J]. JOURNAL OF ALGEBRA, 2015, 421 : 311 - 330
  • [4] DISTANCE BETWEEN 2 SKEW LINES
    SAELMAN, B
    [J]. DESIGN NEWS, 1972, 27 (16) : 50 - &
  • [5] PROJECTIVE SURFACES WITH MANY SKEW LINES
    Rams, Slawomir
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (01) : 11 - 13
  • [6] A combinatorial characterization of two skew lines
    Lucci, Maurizio
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2005, 8 (02): : 237 - 239
  • [7] DISTANCE BETWEEN 2 SKEW LINES
    不详
    [J]. DESIGN NEWS, 1975, 30 (14) : 72 - 72
  • [8] (224) and (264) configurations of lines
    Cuntz, Michael J.
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2018, 14 (01) : 157 - 163
  • [9] Simple algorithm for designing skew-quadrupole cooling configurations
    Carlsten, Bruce E.
    Bishofberger, Kip A.
    [J]. NEW JOURNAL OF PHYSICS, 2006, 8
  • [10] All lines on a smooth cubic surface in terms of three skew lines
    McKean, Stephen
    Minahan, Daniel
    Zhang, Tianyi
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2021, 27 : 1305 - 1327