Bayesian input selection for neural network classifiers

被引:0
|
作者
Verrelst, H [1 ]
Vandewalle, J [1 ]
De Moor, B [1 ]
Timmerman, D [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, ESAT, SISTA, B-3000 Louvain, Belgium
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we discuss the use of the Bayesian posterior probability distribution over weight space and Receiver Operating Characteristic curves in a neural network input selection algorithm. The posterior distribution is obtained by combining the likelihood function based on training data and a prior distribution based on expert knowledge. To numerically calculate the marginalisation, Markov Chain Monte Carlo methods are used. We demonstrate the technique on the problem of ovarian cancer classification. The resulting input selection is then used to train a neural network that significantly outperforms the Risk of Malignancy Index, a traditionally used diagnostic aid.
引用
收藏
页码:125 / 132
页数:8
相关论文
共 50 条
  • [1] Determining the saliency of input variables in neural network classifiers
    Nath, R
    Rajagopalan, B
    Ryker, R
    [J]. COMPUTERS & OPERATIONS RESEARCH, 1997, 24 (08) : 767 - 773
  • [2] Feature selection for modular neural network classifiers
    Guan, Sheng-Uei
    Li, Peng
    [J]. Journal of Intelligent Systems, 2002, 12 (03) : 173 - 200
  • [3] Neural Network Classifiers Estimate Bayesian a posteriori Probabilities
    Richard, Michael D.
    Lippmann, Richard P.
    [J]. NEURAL COMPUTATION, 1991, 3 (04) : 461 - 483
  • [4] Bayesian network classifiers
    Friedman, N
    Geiger, D
    Goldszmidt, M
    [J]. MACHINE LEARNING, 1997, 29 (2-3) : 131 - 163
  • [5] Bayesian Network Classifiers
    Nir Friedman
    Dan Geiger
    Moises Goldszmidt
    [J]. Machine Learning, 1997, 29 : 131 - 163
  • [6] FAST GENETIC SELECTION OF FEATURES FOR NEURAL NETWORK CLASSIFIERS
    BRILL, FZ
    BROWN, DE
    MARTIN, WN
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (02): : 324 - 328
  • [7] Input Variable Selection in Neural Network Models
    Giordano, Francesco
    Rocca, Michele La
    Perna, Cira
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (04) : 735 - 750
  • [8] Detecting denial of service attacks with Bayesian classifiers and the random neural network
    Oke, Guelay
    Loukas, George
    Gelenbe, Erol
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-4, 2007, : 1969 - 1974
  • [9] A Framework for Including Uncertainty in Robustness Evaluation of Bayesian Neural Network Classifiers
    Essbai, Wasim
    Bombarda, Andrea
    Bonfanti, Silvia
    Gargantini, Angelo
    [J]. PROCEEDINGS OF THE 2024 IEEE/ACM INTERNATIONAL WORKSHOP ON DEEP LEARNING FOR TESTING AND TESTING FOR DEEP LEARNING, DEEPTEST 2024, 2024, : 25 - 32
  • [10] On Resource-Efficient Bayesian Network Classifiers and Deep Neural Networks
    Roth, Wolfgang
    Pernkopf, Franz
    Schindler, Gunther
    Froening, Holger
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 10297 - 10304