Production of chlorine-containing functional group doped graphene powders using Yucel's method as anode materials for Li-ion batteries

被引:16
|
作者
Gursu, Hurmus [1 ]
Guner, Yagmur [2 ]
Arvas, Melih Besir [1 ]
Dermenci, Kamil Burak [3 ]
Savaci, Umut [3 ]
Gencten, Metin [4 ]
Turan, Servet [3 ]
Sahin, Yucel [1 ]
机构
[1] Yildiz Tech Univ, Fac Art & Sci, Dept Chem, TR-34220 Istanbul, Turkey
[2] Pamukkale Univ, Dept Met & Mat Engn, TR-20160 Denizli, Turkey
[3] Eskisehir Tech Univ, Dept Mat Sci & Engn, TR-26555 Eskisehir, Turkey
[4] Yildiz Tech Univ, Fac Chem & Met Engn, Dept Met & Mat Engn, TR-34210 Istanbul, Turkey
关键词
GRAPHITE NEGATIVE ELECTRODES; ELECTROCHEMICAL EXFOLIATION; POTENTIAL APPLICATION; CYCLIC VOLTAMMETRY; IN-SITU; PERFORMANCE; OXIDE; SUPERCAPACITOR; PHOTOCATALYSIS; NANOSHEETS;
D O I
10.1039/d1ra07653a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, the one-step electrochemical preparation of chlorine doped and chlorine-oxygen containing functional group doped graphene-based powders was carried out by Yucel's method, with the resultant materials used as anode materials for lithium (Li)-ion batteries. Cl atoms and ClOx (x = 2, 3 or 4) groups, confirmed by X-ray photoelectron spectroscopy analysis, were covalently doped into the graphene powder network to increase the defect density in the graphene framework and improve the electrochemical performance of Li-ion batteries. The microscopic properties of the Cl-doped graphene powder were investigated by scanning electron microscopy and transmission electron microscopy (TEM) analyses. TEM analysis showed that the one-layer thickness of the graphene was approximately 0.33 nm. Raman spectroscopy analysis was carried out to determine the defect density of the graphene structures. The G peak obtained in the Raman spectra is related to the formation of sp(2) hybridized carbons in the graphene-based powders. The 2D peak seen in the spectra shows that the synthesized graphene-based powders have optically transparent structures. In addition, the number of sp(2) hybridized carbon rings was calculated to be 22, 19, and 38 for the Cl-GP1, Cl-GP2, and Cl-GOP samples, respectively. As a result of the charge/discharge tests of the electrodes as anodes in Li-ion batteries, Cl-GP2 exhibits the best electrochemical performance of 493 mA h g(-1) at a charge/discharge current density of 50 mA g(-1).
引用
收藏
页码:40059 / 40071
页数:13
相关论文
共 50 条
  • [1] Preparation of N-doped graphene powders by cyclic voltammetry and a potential application of them: Anode materials of Li-ion batteries
    Gursu, Hurmus
    Guner, Yagmur
    Dermenci, Kamil Burak
    Gencten, Metin
    Buluc, Ahmet Furkan
    Savaci, Umut
    Turan, Servet
    Sahin, Yucel
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (10) : 5346 - 5354
  • [2] GaN/graphene heterostructures as promising anode materials for Li-ion batteries
    Wu, Jianze
    Liu, Bao
    Xia, Xiaoying
    Wang, Zhaoxin
    Zhang, Yongfan
    Huang, Shuping
    SURFACES AND INTERFACES, 2023, 42
  • [3] NiO/Ni powders with effective architectures as anode materials in Li-ion batteries
    Wen, Wei
    Wu, Jin-Ming
    Cao, Min-Hua
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (12) : 3881 - 3885
  • [4] Nitrogen-doped porous carbon coated on graphene sheets as anode materials for Li-ion batteries
    Li Su
    Lijun Gao
    Liyin Hou
    Jingmei Li
    Wu Yang
    Xiujuan Qin
    Ionics, 2019, 25 : 1541 - 1549
  • [5] Nitrogen-doped porous carbon coated on graphene sheets as anode materials for Li-ion batteries
    Su, Li
    Gao, Lijun
    Hou, Liyin
    Li, Jingmei
    Yang, Wu
    Qin, Xiujuan
    IONICS, 2019, 25 (04) : 1541 - 1549
  • [6] Boron doped defective graphene as a potential anode material for Li-ion batteries
    Hardikar, Rahul P.
    Das, Deya
    Han, Sang Soo
    Lee, Kwang-Ryeol
    Singh, Abhishek K.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (31) : 16502 - 16508
  • [7] Si clusters/defective graphene composites as Li-ion batteries anode materials: A density functional study
    Li, Meng
    Liu, Yue-Jie
    Zhao, Jing-xiang
    Wang, Xiao-guang
    APPLIED SURFACE SCIENCE, 2015, 345 : 337 - 343
  • [8] CoO Porous Nanospindles/Graphene Nanocomposites as Anode Materials for Li-Ion Batteries
    Liu, Chunping
    Liu, Jun
    Ji, Shaomin
    Zhou, Yichun
    MATERIALS FOCUS, 2012, 1 (02) : 149 - 153
  • [9] Exotic nanoparticles of group IV monochalcogenides as anode materials for Li-Ion batteries
    Chronis, A. G.
    Karantagli, E.
    Michos, F. I.
    Garoufalis, Christos S.
    Sigalas, M. M.
    SOLID STATE COMMUNICATIONS, 2021, 332
  • [10] Graphene and graphene/binary transition metal oxide composites as anode materials in Li-ion batteries
    Marka, Sandeep K.
    Srikanth, Vadali V.S.S.
    Nanoscience and Nanotechnology - Asia, 2015, 5 (02): : 90 - 108