Capillary filtration coefficient is independent of number of perfused capillaries in cat skeletal muscle

被引:29
|
作者
Bentzer, P
Kongstad, L
Grände, PO
机构
[1] Univ Lund, Dept Physiol Sci, SE-22184 Lund, Sweden
[2] Univ Lund, Dept Anesthesia & Intens Care, SE-22184 Lund, Sweden
[3] Univ Lund, Univ Lund Hosp, SE-22184 Lund, Sweden
关键词
microvessels; microspheres; metabolic influence; norepinephrine; sympathetic stimulation;
D O I
10.1152/ajpheart.2001.280.6.H2697
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The capillary filtration coefficient (CFC) is assumed to reflect both microvascular hydraulic conductivity and the number of perfused capillaries at a given moment (precapillary sphincter activity). Estimation of hydraulic conductivity in vivo with the CFC method has therefore been performed under conditions of unchanged vascular tone and metabolic influence. There are studies, however, that did not show any change in CFC after changes in vascular tone and metabolic influence, and these studies indicate that CFC may not be influenced by alteration in the number of perfused capillaries. The present study reexamined to what extent CFC in a pressure-controlled preparation depends on the vascular tone and number of perfused capillaries by analyzing how CFC is influenced by 1) vasoconstriction, 2) increase in metabolic influence by decrease in arterial blood pressure, and 3) occlusion of precapillary microvessels by arterial infusion of microspheres. CFC was calculated from the filtration rate induced by a fixed decrease in tissue pressure. Vascular tone was increased in two steps by norepinephrine (n = 7) or angiotensin II (n = 6), causing a blood flow reduction from 7.2 +/- 0.8 to at most 2.7 +/- 0.2 ml . min(-1) . 100 g(-1) (P< 0.05). The decrease in arterial pressure reduced blood flow from 4.8 +/- 0.4 to 1.40 +/- 0.1 ml . min(-1) . 100 g(-1) (n = 6). Vascular resistance increased to 990 +/- 260% of control after the infusion of microspheres (n = 6). CFC was not significantly altered from control after any of the experimental interventions. We conclude that CFC under these conditions is independent of the vascular tone and number of perfused capillaries and that variation in CFC reflects variation in microvascular hydraulic conductivity.
引用
收藏
页码:H2697 / H2706
页数:10
相关论文
共 50 条