Upper bounds on Roman domination numbers of graphs

被引:35
|
作者
Liu, Chun-Hung [1 ,2 ]
Chang, Gerard Jennhwa [2 ,3 ,4 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
[3] Natl Taiwan Univ, Taida Inst Math Sci, Taipei 10617, Taiwan
[4] Taipei Off, Natl Ctr Theoret Sci, Taipei, Taiwan
关键词
Domination; Roman domination; Minimum degree; Forbidden subgraph; Cocomparability graph;
D O I
10.1016/j.disc.2011.12.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Roman dominating function of a graph G is a function f: V (G) -> {0. 1.2} such that whenever f (v) = 0 there exists a vertex u adjacent to v with f (u) = 2. The weight of f is w(f) = Sigma(v epsilon V(G))f(v). The Roman domination number gamma(R)(G) of G is the minimum weight of a Roman dominating function of G. This paper establishes a sharp upper bound on the Roman domination numbers of graphs with minimum degree at least 3. An upper bound on the Roman domination numbers of connected, big-claw-free and big-net-free graphs is also given. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1386 / 1391
页数:6
相关论文
共 50 条
  • [1] BOUNDS ON ROMAN DOMINATION NUMBERS OF GRAPHS
    Mobaraky, B. P.
    Sheikholeslami, S. M.
    [J]. MATEMATICKI VESNIK, 2008, 60 (04): : 247 - 253
  • [2] On upper bounds for multiple domination numbers of graphs
    Przybylo, Jakub
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) : 2758 - 2763
  • [3] Upper Bounds for the Paired-Domination Numbers of Graphs
    Changhong Lu
    Chao Wang
    Kan Wang
    [J]. Graphs and Combinatorics, 2016, 32 : 1489 - 1494
  • [4] Upper Bounds for the Paired-Domination Numbers of Graphs
    Lu, Changhong
    Wang, Chao
    Wang, Kan
    [J]. GRAPHS AND COMBINATORICS, 2016, 32 (04) : 1489 - 1494
  • [5] A note on the bounds of Roman domination numbers
    Li, Zepeng
    [J]. AIMS MATHEMATICS, 2021, 6 (04): : 3940 - 3946
  • [6] Bounds for independent Roman domination in graphs
    Department of Mathematics, Shahrood University of Technology, Shahrood, Iran
    不详
    不详
    [J]. J. Comb. Math. Comb. Comp., (351-365):
  • [7] On the Upper Bounds of Local Inverse Signed Edge Domination Numbers in Graphs
    Feng, Zhifang
    Li, Wensheng
    Xing, Huaming
    Ma, Qiongyu
    [J]. INFORMATION COMPUTING AND APPLICATIONS, PT 1, 2012, 307 : 368 - 372
  • [8] Upper bounds for the domination subdivision and bondage numbers of graphs on topological surfaces
    Vladimir Samodivkin
    [J]. Czechoslovak Mathematical Journal, 2013, 63 : 191 - 204
  • [9] Upper bounds for the domination subdivision and bondage numbers of graphs on topological surfaces
    Samodivkin, Vladimir
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (01) : 191 - 204
  • [10] On the Bounds of the Domination Numbers of Glued Graphs
    Sripratak, Piyashat
    Panma, Sayan
    [J]. THAI JOURNAL OF MATHEMATICS, 2021, 19 (04): : 1719 - 1728