Nonlinear statistical spline smoothers for critical spherical black hole solutions in 4-dimension

被引:3
|
作者
Hatefi, Ehsan [1 ,2 ,3 ]
Hatefi, Armin [4 ]
机构
[1] Univ Alcala, Dept Signal Theory & Commun, GRAM Res Grp, Alcala De Henares 28805, Spain
[2] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
[3] Ist Nazl Fis Nucl, Piazza Cavalieri 7, I-56126 Pisa, Italy
[4] Mem Univ Newfoundland, Dept Math & Stat, St John, NL, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Mathematical physics; Gravity; Theoretical physics; Black holes; Statistical physics; WEAK-COUPLING DUALITY; GRAVITATIONAL COLLAPSE; CRITICAL-BEHAVIOR; CRITICAL EXPONENTS; SELF-SIMILARITY; UNIVERSALITY;
D O I
10.1016/j.aop.2022.169112
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper focuses on self-similar gravitational collapse solutions of the Einstein-axion-dilaton configuration for two conjugacy classes of SL(2, R) transformations. These solutions are invariant under spacetime dilation, combined with internal transforma-tions. For the first time in Einstein-axion-dilaton literature, we apply the nonlinear statistical spline regression methods to estimate the critical spherical black hole solutions in four dimensions. These spline methods include truncated power basis, natural cubic spline and penalized B-spline. The prediction errors of the statistical models, on average, are almost less than 10-2, so all the developed models can be considered unbiased estimators for the critical collapse functions over their entire domains. In addition to this excellence, we derived closed forms and continuously differentiable estimators for all the critical collapse functions.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] SOME EXACT-SOLUTIONS OF STRING THEORY IN 4-DIMENSION AND 5-DIMENSION
    HORAVA, P
    [J]. PHYSICS LETTERS B, 1992, 278 (1-2) : 101 - 110
  • [2] Estimation of Critical Collapse Solutions to Black Holes with Nonlinear Statistical Models
    Hatefi, Ehsan
    Hatefi, Armin
    [J]. MATHEMATICS, 2022, 10 (23)
  • [3] On a critical dimension in a spherical black brane phase transition
    Khmelnitsky, Andrei
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (06)
  • [4] Multiply unstable black hole critical solutions
    Liebling, SL
    [J]. PHYSICAL REVIEW D, 1998, 58 (08):
  • [5] Analytical solutions for black-hole critical behaviour
    Tomohiro Harada
    Ashutosh Mahajan
    [J]. General Relativity and Gravitation, 2007, 39 : 1847 - 1854
  • [6] Analytical solutions for black-hole critical behaviour
    Harada, Tomohiro
    Mahajan, Ashutosh
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2007, 39 (11) : 1847 - 1854
  • [7] Exact black hole solutions with nonlinear electrodynamic field
    Yu, Shuang
    Gao, Changjun
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2020, 29 (05):
  • [8] Thermodynamic Phase Transition and Critical Behavior of a Spherical Symmetric Black Hole
    Jiang, Ji-Jian
    Li, Chuan-An
    Cheng, Xie-Feng
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (04) : 2053 - 2060
  • [9] Thermodynamic Phase Transition and Critical Behavior of a Spherical Symmetric Black Hole
    Ji-Jian Jiang
    Chuan-An Li
    Xie-Feng Cheng
    [J]. International Journal of Theoretical Physics, 2016, 55 : 2053 - 2060
  • [10] Spherical nonlinear absorption of cosmological scalar fields onto a black hole
    Guzman, F. S.
    Lora-Clavijo, F. D.
    [J]. PHYSICAL REVIEW D, 2012, 85 (02):