Synchronization of stochastic lattice equations and upper semicontinuity of attractors

被引:3
|
作者
Bessaih, Hakima [1 ]
Garrido-Atienza, Maria J. [2 ]
Koepp, Verena [3 ]
Schmalfuss, Bjoern [3 ]
机构
[1] Florida Int Univ, Math & Stat Dept, Miami, FL 33199 USA
[2] Univ Seville, Fac Matemat, Dept Ecuac Diferenciales & Anal Numer, Seville, Spain
[3] Friedrich Schiller Univ Jena, Inst Stochast, Ernst Abbe Pl 2, D-77043 Jena, Germany
关键词
Random dynamical systems; Stochastic lattice equations; Synchronization; Random attractors; CELLULAR NEURAL-NETWORKS; DYNAMICAL-SYSTEMS;
D O I
10.1080/07362994.2021.1981383
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system of two coupled stochastic lattice equations driven by additive white noise processes, where the strength of the coupling is given by a parameter kappa >= 0. We show that these equations generate a random dynamical system which has a random pull-back attractor. This attractor naturally depends on the parameter kappa. When the intensity of the coupling becomes large, we observe that the components of the given system synchronize. To describe this phenomenon, we prove the upper semicontinuity of the family of attractors with respect to the attractor of a specific limiting system.
引用
收藏
页码:1067 / 1103
页数:37
相关论文
共 50 条