Learning Blind Quality Evaluator for Stereoscopic Images Using Joint Sparse Representation
被引:39
|
作者:
Shao, Feng
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R ChinaNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Shao, Feng
[1
]
Li, Kemeng
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R ChinaNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Li, Kemeng
[1
]
Lin, Weisi
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Comp Engn, Ctr Multimedia & Network Technol, Singapore 639798, SingaporeNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Lin, Weisi
[2
]
Jiang, Gangyi
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R ChinaNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Jiang, Gangyi
[1
]
Dai, Qionghai
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Broadband Networks & Digital Media Lab, Beijing 100084, Peoples R ChinaNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Dai, Qionghai
[3
]
机构:
[1] Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Perceptual quality prediction for stereoscopic images is of fundamental importance in determining the level of quality perceived by humans in terms of the 3D viewing experience. However, the existing no-reference quality assessment (NR-IQA) framework has its limitation in addressing binocular combination for stereoscopic images. In this paper, we propose a new NR-IQA for stereoscopic images using joint sparse representation. We analyze the relationship between left and right quality predictors, and formulate stereoscopic quality prediction as a combination of feature-prior and feature-distribution. Based on this finding, we extract feature vector that handles different features to be interacted by joint sparse representation, and use support vector regression to characterize feature-prior. Meanwhile, we implement feature-distribution using sparsity regularization as the basis of weights for binocular combination to derive the overall quality score. Experimental results on five public 3D IQA databases demonstrate that in comparison with the existing methods, the devised algorithm achieves high consistent alignment with subjective assessment.
机构:
Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R ChinaNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Shao, Feng
Tian, Weijun
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R ChinaNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Tian, Weijun
Lin, Weisi
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Ctr Multimedia & Network Technol, Sch Comp Engn, Singapore 639798, SingaporeNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Lin, Weisi
Jiang, Gangyi
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R ChinaNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Jiang, Gangyi
Dai, Qionghai
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Broadband Networks & Digital Media Lab, Beijing 100084, Peoples R ChinaNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
机构:
Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R ChinaNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Shao, Feng
Tian, Weijun
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R ChinaNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Tian, Weijun
Lin, Weisi
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Comp Engn, Ctr Multimedia & Network Technol, Singapore 639798, SingaporeNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Lin, Weisi
Jiang, Gangyi
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R ChinaNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Jiang, Gangyi
Dai, Qionghai
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Broadband Networks & Digital Media Lab, Beijing 100084, Peoples R ChinaNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
机构:
Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R ChinaNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Shao, Feng
Lin, Weisi
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Comp Engn, Ctr Multimedia & Network Technol, Singapore 639798, SingaporeNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Lin, Weisi
Wang, Shanshan
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R ChinaNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Wang, Shanshan
Jiang, Gangyi
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R ChinaNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Jiang, Gangyi
Yu, Mei
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R ChinaNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
Yu, Mei
Dai, Qionghai
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Broadband Networks & Digital Media Lab, Beijing 100084, Peoples R ChinaNingbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China
机构:
Department of Computer Science and Technology, Tongji University Shanghai, ChinaDepartment of Computer Science and Technology, Tongji University Shanghai, China
Li, Jianyuan
Guan, Jihong
论文数: 0引用数: 0
h-index: 0
机构:
Department of Computer Science and Technology, Tongji University Shanghai, ChinaDepartment of Computer Science and Technology, Tongji University Shanghai, China