Metrics on sets of interval partitions with diversity

被引:4
|
作者
Forman, Noah [1 ]
Pal, Soumik [2 ]
Rizzolo, Douglas [3 ]
Winkel, Matthias [4 ]
机构
[1] McMaster Univ, Dept Math, Hamilton, ON L8S 4K1, Canada
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
[3] Univ Delaware, Dept Math, Newark, DE 19716 USA
[4] Univ Oxford, Dept Stat, 24-29 St Giles, Oxford OX1 3LB, England
基金
英国工程与自然科学研究理事会;
关键词
interval partition; Poisson-Dirichlet distribution; alpha-diversity; INFINITE-DIMENSIONAL DIFFUSIONS; REPRESENTATION; GROWTH; TREES; LAWS;
D O I
10.1214/20-ECP317
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We first consider interval partitions whose complements are Lebesgue-null and introduce a complete metric that induces the same topology as the Hausdorff distance (between complements). This is done using correspondences between intervals. Further restricting to interval partitions with alpha-diversity, we then adjust the metric to incorporate diversities. We show that this second metric space is Lusin. An important feature of this topology is that path-continuity in this topology implies the continuous evolution of diversities. This is important in related work on tree-valued stochastic processes where diversities are branch lengths.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] On δ-ε-Partitions for Finite Interval-Valued Hesitant Fuzzy Sets
    Quiros, Pelayo
    Alonso, Pedro
    Diaz, Irene
    Montes, Susana
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2016, 24 : 145 - 163
  • [2] UNIFORM PARTITIONS OF AN INTERVAL
    DROBOT, V
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 268 (01) : 151 - 160
  • [3] PARTITIONS OF FINITE SETS
    WOLFSDORF, K
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1980, 28 (01) : 1 - 6
  • [4] On sets represented by partitions
    Aval, JC
    EUROPEAN JOURNAL OF COMBINATORICS, 1999, 20 (05) : 317 - 320
  • [5] PARTITIONS INTO STATIONARY SETS
    PRIKRY, K
    SOLOVAY, RM
    JOURNAL OF SYMBOLIC LOGIC, 1975, 40 (01) : 75 - 80
  • [6] RANDOM PARTITIONS OF SETS
    SACHKOV, VN
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1974, 19 (01): : 187 - 194
  • [7] PARTITIONS OF FINITE SETS
    GRIGGS, J
    GESSEL, I
    AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (01): : 64 - 65
  • [8] PARTITIONS OF SETS OF MATRICES
    SMALLWOOD, CV
    DISCRETE MATHEMATICS, 1975, 13 (03) : 261 - 275
  • [9] The recombination equation for interval partitions
    Baake, Michael
    Shamsara, Elham
    MONATSHEFTE FUR MATHEMATIK, 2017, 182 (02): : 243 - 269
  • [10] Interval Partitions and Polynomial Factorization
    von zur Gathen, Joachim
    Panario, Daniel
    Richmond, Bruce
    ALGORITHMICA, 2012, 63 (1-2) : 363 - 397