Bias-corrected AIC for selecting variables in multinomial logistic regression models

被引:14
|
作者
Yanagihara, Hirokazu [1 ]
Kamo, Ken-ichi [2 ]
Imori, Shinpei [1 ]
Satoh, Kenichi [3 ]
机构
[1] Hiroshima Univ, Dept Math, Grad Sch Sci, Higashihiroshima 7398626, Japan
[2] Sapporo Med Univ, Dept Liberal Arts & Sci, Chuo Ku, Sapporo, Hokkaido 0608543, Japan
[3] Hiroshima Univ, Dept Environmetr & Biometr, Res Inst Radiat Biol & Med, Minami Ku, Hiroshima 7348553, Japan
关键词
AIC; Bias correction; Multinomial logistic model; MLE; Partial differential operator; Variable selection;
D O I
10.1016/j.laa.2012.01.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the bias correction of Akaike's information criterion (AIC) for selecting variables in multinomial logistic regression models. For simplifying a formula of the bias-corrected AIC, we calculate the bias of the AIC to a risk function through the expectations of partial derivatives of the negative log-likelihood function. As a result, we can express the bias correction term of the bias-corrected AIC with only three matrices consisting of the second, third, and fourth derivatives of the negative log-likelihood function. By conducting numerical studies, we verify that the proposed bias-corrected AIC performs better than the crude AIC. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4329 / 4341
页数:13
相关论文
共 50 条
  • [1] Bias-Corrected AIC for Selecting Variables in Poisson Regression Models
    Kamo, Ken-Ichi
    Yanagihara, Hirokazu
    Satoh, Kenichi
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (11) : 1911 - 1921
  • [2] A high-dimensional bias-corrected AIC for selecting response variables in multivariate calibration
    Oda, Ryoya
    Mima, Yoshie
    Yanagihara, Hirokazu
    Fujikoshi, Yasunori
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (14) : 3453 - 3476
  • [3] Bias correction of AIC in logistic regression models
    Yanagihara, H
    Sekiguchi, R
    Fujikoshi, Y
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 115 (02) : 349 - 360
  • [4] Simple Formula for Calculating Bias-corrected AIC in Generalized Linear Models
    Imori, Shinpei
    Yanagihara, Hirokazu
    Wakaki, Hirofumi
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (02) : 535 - 555
  • [5] Bias-corrected quantile regression estimation of censored regression models
    Cizek, P.
    Sadikoglu, S.
    [J]. STATISTICAL PAPERS, 2018, 59 (01) : 215 - 247
  • [6] Bias-corrected quantile regression estimation of censored regression models
    P. Čížek
    S. Sadikoglu
    [J]. Statistical Papers, 2018, 59 : 215 - 247
  • [7] Stable and bias-corrected estimation for nonparametric regression models
    Lin, Lu
    Li, Feng
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2008, 20 (04) : 283 - 303
  • [8] Bias-Corrected Bootstrap Inference for Regression Models with Autocorrelated Errors
    Kim, Jae
    [J]. ECONOMICS BULLETIN, 2005, 3
  • [9] Bias-corrected random forests in regression
    Zhang, Guoyi
    Lu, Yan
    [J]. JOURNAL OF APPLIED STATISTICS, 2012, 39 (01) : 151 - 160
  • [10] Bias-corrected estimates for logistic regression models for complex surveys with application to the United States' Nationwide Inpatient Sample
    Rader, Kevin A.
    Lipsitz, Stuart R.
    Fitzmaurice, Garrett M.
    Harrington, David P.
    Parzen, Michael
    Sinha, Debajyoti
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (05) : 2257 - 2269