Strichartz's Radon transforms for mutually orthogonal affine planes and fractional integrals

被引:0
|
作者
Wang, Yingzhan [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou, Peoples R China
关键词
Radon transforms (primary); Grassmann manifolds; Riesz potentials; Semyanistyi integrals;
D O I
10.1007/s13540-022-00079-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the general orthogonal Radon transform R-j, k(p) first studied by R.S. Strichartz in [21]. The main conclusions include the sharp existence conditions for R-j, k(p) f on Lebesgue spaces, the relation formulas connecting our transforms with the fractional integrals and Semyanistyi integrals, through which a number of explicit inversion formulas are obtained when f restricted in the range of j-plane transforms.
引用
收藏
页码:1971 / 1993
页数:23
相关论文
共 10 条