A New Kernel for Parameterized Max-Bisection Above Tight Lower Bound

被引:0
|
作者
Feng, Qilong [1 ]
Zhu, Senmin [1 ]
Wang, Jianxin [1 ]
机构
[1] Cent South Univ, Sch Informat Sci & Engn, Changsha 410083, Peoples R China
来源
COMPUTING AND COMBINATORICS, COCOON 2017 | 2017年 / 10392卷
基金
中国国家自然科学基金;
关键词
IMPROVED APPROXIMATION ALGORITHMS; CUT;
D O I
10.1007/978-3-319-62389-4_16
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we study kernelization of Parameterized Max-Bisection above Tight Lower Bound problem, which is to find a bisection (V-1, V-2) of G with at least inverted right perpendicular vertical bar E vertical bar/2inverted left perpendicular + k crossing edges for a given graph G = (V, E). The current best vertex kernel result for the problem is of size 16k. Based on analysis of the relation between maximum matching and vertices in Gallai-Edmonds decomposition of G, we divide graph G into a set of blocks, and each block in G is closely related to the number of crossing edges of bisection of G. By analyzing the number of crossing edges in all blocks, an improved vertex kernel of size 8k is presented.
引用
收藏
页码:188 / 199
页数:12
相关论文
共 20 条
  • [1] An improved kernel for Max-Bisection above tight lower bound
    Feng, Qilong
    Zhu, Senmin
    Wang, Jianxin
    THEORETICAL COMPUTER SCIENCE, 2020, 818 (818) : 12 - 21
  • [2] Betweenness parameterized above tight lower bound
    Gutin, Gregory
    Kim, Eun Jung
    Mnich, Matthias
    Yeo, Anders
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2010, 76 (08) : 872 - 878
  • [3] Note on maximal bisection above tight lower bound
    Gutin, Gregory
    Yeo, Anders
    INFORMATION PROCESSING LETTERS, 2010, 110 (21) : 966 - 969
  • [4] A new Lagrangian net algorithm for solving max-bisection problems
    Xu Fengmin
    Ma Xusheng
    Chen Baili
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (13) : 3718 - 3723
  • [5] Solving MAX-r-SAT Above a Tight Lower Bound
    Alon, Noga
    Gutin, Gregory
    Kim, Eun Jung
    Szeider, Stefan
    Yeo, Anders
    ALGORITHMICA, 2011, 61 (03) : 638 - 655
  • [6] Solving MAX-r-SAT Above a Tight Lower Bound
    Alon, Noga
    Gutin, Gregory
    Kim, Eun Jung
    Szeider, Stefan
    Yeo, Anders
    PROCEEDINGS OF THE TWENTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2010, 135 : 511 - +
  • [7] Solving MAX-r-SAT Above a Tight Lower Bound
    Noga Alon
    Gregory Gutin
    Eun Jung Kim
    Stefan Szeider
    Anders Yeo
    Algorithmica, 2011, 61 : 638 - 655
  • [8] Improved kernels for signed max cut parameterized above lower bound on (r,l)-graphs*
    2017, Discrete Mathematics and Theoretical Computer Science (19):
  • [9] Improved Kernels for Signed Max Cut Parameterized Above Lower Bound on (r, l)-graphs
    Faria, Luerbio
    Klein, Sulamita
    Sau, Ignasi
    Sucupira, Rubens
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2017, 19 (01):
  • [10] Max-Cut Parameterized Above the Edwards-ErdAs Bound
    Crowston, Robert
    Jones, Mark
    Mnich, Matthias
    ALGORITHMICA, 2015, 72 (03) : 734 - 757