Reconstruction of Sentinel-2 Image Time Series Using Google Earth Engine

被引:13
|
作者
Yang, Kaixiang [1 ,2 ]
Luo, Youming [1 ,2 ]
Li, Mengyao [1 ,2 ]
Zhong, Shouyi [1 ,2 ]
Liu, Qiang [1 ,2 ]
Li, Xiuhong [1 ,2 ]
机构
[1] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Sentinel-2; Google Earth Engine; NDVI; surface reflectance; time series; reconstruction; SURFACE REFLECTANCE; QUALITY; FUSION;
D O I
10.3390/rs14174395
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sentinel-2 NDVI and surface reflectance time series have been widely used in various geoscience research, but the data is deteriorated or missing due to the cloud contamination, so it is necessary to reconstruct the Sentinel-2 NDVI and surface reflectance time series. At present, there are few studies on reconstructing the Sentinel-2 NDVI or surface reflectance time series, and these existing reconstruction methods have some shortcomings. We proposed a new method to reconstruct the Sentinel-2 NDVI and surface reflectance time series using the penalized least-square regression based on discrete cosine transform (DCT-PLS) method. This method iteratively identifies cloud-contaminated NDVI over NDVI time series from the Sentinel-2 surface reflectance data by adjusting the weights. The NDVI and surface reflectance time series are then reconstructed from cloud-free NDVI and surface reflectance using the adjusted weights as constraints. We have made some improvements to the DCT-PLS method. First, the traditional discrete cosine transformation (DCT) in the DCT-PLS method is matrix generated from discrete and equally spaced data, we reconfigured the DCT formulas to adapt for irregular interval time series, and optimized the control parameters N and s according to the typical vegetation samples in China. Second, the DCT-PLS method was deployed in the Google Earth Engine (GEE) platform for the efficiency and convenience of data users. We used the DCT-PLS method to reconstruct the Sentinel-2 NDVI time series and surface reflectance time series in the blue, green, red, and near infrared (NIR) bands in typical vegetation samples and the Zhangjiakou and Hangzhou study area. We found that this method performed better than the SG filter method in reconstructing the NDVI time series, and can identify and reconstruct the contaminated NDVI as well as surface reflectance with low root mean square error (RMSE) and high coefficient of determination (R-2). However, in cases of a long range of cloud contamination, or above water surface, it may be necessary to increase the control parameter s for a more stable performance. The GEE code is freely available online and the link is in the conclusions of this article, researchers are welcome to use this method to generate cloudless Sentinel-2 NDVI and surface reflectance time series with 10 m spatial resolution, which is convenient for landcover classification and many other types of research.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] SHORELINE EXTRACTION USING TIME SERIES OF SENTINEL-2 SATELLITE IMAGES BY GOOGLE EARTH ENGINE PLATFORM
    Rostami, E.
    Sharifi, M. A.
    Hasanlou, M.
    [J]. ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 653 - 659
  • [2] Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine
    Liu, Luo
    Xiao, Xiangming
    Qin, Yuanwei
    Wang, Jie
    Xu, Xinliang
    Hu, Yueming
    Qiao, Zhi
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 239
  • [3] Improved mapping of highland bamboo forests using Sentinel-2 time series and machine learning in Google Earth Engine
    Yebeyen, Dagnew
    Hailu, Binyam Tesfaw
    Zewdie, Worku
    Abera, Temesgen
    Sileshi, Gudeta W.
    Getachew, Melaku
    Nemomissa, Sileshi
    [J]. GEOCARTO INTERNATIONAL, 2024, 39 (01)
  • [4] Mapping Tidal Flats of the Bohai and Yellow Seas Using Time Series Sentinel-2 Images and Google Earth Engine
    Chang, Maoxiang
    Li, Peng
    Li, Zhenhong
    Wang, Houjie
    [J]. REMOTE SENSING, 2022, 14 (08)
  • [5] Cropland and Crop Type Classification with Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine for Agricultural Monitoring in Ethiopia
    Eisfelder, Christina
    Boemke, Bruno
    Gessner, Ursula
    Sogno, Patrick
    Alemu, Genanaw
    Hailu, Rahel
    Mesmer, Christian
    Huth, Juliane
    [J]. REMOTE SENSING, 2024, 16 (05)
  • [6] Mapping Paddy Fields in Japan by Using a Sentinel-1 SAR Time Series Supplemented by Sentinel-2 Images on Google Earth Engine
    Inoue, Shimpei
    Ito, Akihiko
    Yonezawa, Chinatsu
    [J]. REMOTE SENSING, 2020, 12 (10)
  • [7] An Experiment for Surface Soil Moisture Mapping Using Sentinel-1 and Sentinel-2 Image on Google Earth Engine
    Lee, Jihyun
    Kim, Kwangseob
    Lee, Kiwon
    [J]. KOREAN JOURNAL OF REMOTE SENSING, 2023, 39 (05) : 599 - 608
  • [8] Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine
    Jia, Mingming
    Wang, Zongming
    Mao, Dehua
    Ren, Chunying
    Wang, Chao
    Wang, Yeqiao
    [J]. REMOTE SENSING OF ENVIRONMENT, 2021, 255
  • [9] Harmonized Landsat and Sentinel-2 Data with Google Earth Engine
    Berra, Elias Fernando
    Fontana, Denise Cybis
    Yin, Feng
    Breunig, Fabio Marcelo
    [J]. REMOTE SENSING, 2024, 16 (15)
  • [10] Combing Sentinel-1 and Sentinel-2 image time series for invasive Spartina alterniflora mapping on Google Earth Engine: a case study in Zhangjiang Estuary
    Dong, Di
    Wang, Chao
    Yan, Jinhui
    He, Qingyou
    Zeng, Jisheng
    Wei, Zheng
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (04)