Homological and homotopical higher-order filling functions

被引:15
|
作者
Young, Robert [1 ,2 ]
机构
[1] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
Dehn functions; filling invariants; DEHN FUNCTIONS;
D O I
10.4171/GGD/144
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct groups in which FV(3) (n) (sic) delta(2). (n). This construction also leads to groups G(k), k >= 3, for which delta(k) (n) is not subrecursive.
引用
收藏
页码:683 / 690
页数:8
相关论文
共 50 条
  • [1] Homological and homotopical Dehn functions are different
    Abrams, Aaron
    Brady, Noel
    Dani, Pallavi
    Young, Robert
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (48) : 19206 - 19212
  • [2] Contracts for higher-order functions
    Findler, RB
    Felleisen, M
    [J]. ACM SIGPLAN NOTICES, 2002, 37 (09) : 48 - 59
  • [3] HIGHER-ORDER COHERENCE FUNCTIONS
    NATH, R
    [J]. LETTERE AL NUOVO CIMENTO, 1978, 23 (13): : 494 - 496
  • [4] Contracts for Higher-Order Functions
    Findler, Robert Bruce
    Felleisen, Matthias
    [J]. ACM SIGPLAN NOTICES, 2013, 48 (04) : 34 - 45
  • [5] Homological filling functions with coefficients
    Li, Xingzhe
    Manin, Fedor
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2022, 16 (03) : 889 - 907
  • [6] The higher-order derivatives of spectral functions
    Sendov, Hristo S.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 424 (01) : 240 - 281
  • [7] STRICTNESS ANALYSIS FOR HIGHER-ORDER FUNCTIONS
    BURN, GL
    HANKIN, C
    ABRAMSKY, S
    [J]. SCIENCE OF COMPUTER PROGRAMMING, 1986, 7 (03) : 249 - 278
  • [8] HIGHER-ORDER DERIVATIVES OF CONNECTED FUNCTIONS
    HUSTY, Z
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 1990, 40 (03) : 528 - 533
  • [9] HIGHER-ORDER ANGULAR COHERENCE FUNCTIONS
    AGRAWAL, GP
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1973, B 18 (02): : 265 - 276
  • [10] Arithmetic functions of higher-order primes
    Czarnecki, Kyle
    Giddings, Andrew
    [J]. INVOLVE, A JOURNAL OF MATHEMATICS, 2020, 13 (02): : 181 - 191