Chordal Graphs are Fully Orientable

被引:0
|
作者
Lai, Hsin-Hao [1 ]
Lih, Ko-Wei [2 ]
机构
[1] Natl Kaohsiung Normal Univ, Dept Math, Kaohsiung 824, Taiwan
[2] Acad Sinica, Inst Math, Taipei 115, Taiwan
关键词
acyclic orientation; full orientability; simplicial vertex; chordal graph; ACYCLIC ORIENTATIONS; DEPENDENT ARCS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that D is an acyclic orientation of a graph G. An arc of D is called dependent if its reversal creates a directed cycle. Let d(min)(G) (d(max) (G)) denote the minimum (maximum) of the number of dependent arcs over all acyclic orientations of G. We call G fully orientable if G has an acyclic orientation with exactly d dependent arcs for every d satisfying d(min)(G) <= d <= d(max)(G). A graph G is called chordal if every cycle in G of length at least four has a chord. We show that all chordal graphs are fully orientable.
引用
收藏
页码:289 / 298
页数:10
相关论文
共 50 条
  • [1] Fully Dynamic Algorithms for Chordal Graphs and Split Graphs
    Ibarra, Louis
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2008, 4 (04)
  • [2] A fully dynamic algorithm for recognizing and representing chordal graphs
    kyzy, Yrysgul Tursunbay
    [J]. PERSPECTIVES OF SYSTEMS INFORMATICS, 2007, 4378 : 481 - 486
  • [3] Chordal Graphs
    Arneson, Broderick
    Rudnicki, Piotr
    [J]. FORMALIZED MATHEMATICS, 2006, 14 (03): : 79 - 92
  • [4] Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs
    Marthe Bonamy
    Matthew Johnson
    Ioannis Lignos
    Viresh Patel
    Daniël Paulusma
    [J]. Journal of Combinatorial Optimization, 2014, 27 : 132 - 143
  • [5] Chordal multipartite graphs and chordal colorings
    McKee, Terry A.
    [J]. DISCRETE MATHEMATICS, 2007, 307 (17-18) : 2309 - 2314
  • [6] Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs
    Bonamy, Marthe
    Johnson, Matthew
    Lignos, Ioannis
    Patel, Viresh
    Paulusma, Daniel
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (01) : 132 - 143
  • [7] On cyclically orientable graphs
    Gurvich, Vladimir
    [J]. DISCRETE MATHEMATICS, 2008, 308 (01) : 129 - 135
  • [8] Chordal graphs and their clique graphs
    Galinier, P
    Habib, M
    Paul, C
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 1995, 1017 : 358 - 371
  • [9] Prime orientable graphs
    Belkhechine, Houmem
    [J]. DISCRETE MATHEMATICS, 2022, 345 (01)
  • [10] Chordal bipartite, strongly chordal, and strongly chordal bipartite graphs
    McKee, TA
    [J]. DISCRETE MATHEMATICS, 2003, 260 (1-3) : 231 - 238