On properties of a new decomposable entropy of Dempster-Shafer belief functions

被引:34
|
作者
Jirousek, Radim [1 ,2 ]
Shenoy, Prakash P. [3 ]
机构
[1] Univ Econ, Fac Management, Jindrichuv Hrade, Czech Republic
[2] Czech Acad Sci, Inst Informat Theory & Automat, Prague, Czech Republic
[3] Univ Kansas, Sch Business, Lawrence, KS 66045 USA
关键词
Shannon's entropy; Dempster-Shafer theory of belief functions; Decomposable entropy of belief functions; Compound distributions property; Conditional entropy; Strong probability consistency; UNCERTAINTY; INFORMATION; AMBIGUITY;
D O I
10.1016/j.ijar.2020.01.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We define entropy of belief functions in the Dempster-Shafer (D-S) theory that satisfies a compound distributions property that is analogous to the property that characterizes Shannon's definitions of entropy and conditional entropy for probability mass functions. None of the existing definitions of entropy for belief functions in the D-S theory satisfy this property. We describe some important properties of our definition, and discuss its semantics as a measure of dissonance and not uncertainty. Finally, we compare our definition of entropy with some other definitions that are similar to ours in the sense that these definitions measure dissonance and not uncertainty. Published by Elsevier Inc.
引用
收藏
页码:260 / 279
页数:20
相关论文
共 50 条
  • [1] A Decomposable Entropy of Belief Functions in the Dempster-Shafer Theory
    Jirousek, Radim
    Shenoy, Prakash P.
    [J]. BELIEF FUNCTIONS: THEORY AND APPLICATIONS, BELIEF 2018, 2018, 11069 : 146 - 154
  • [2] Entropy of Belief Functions in the Dempster-Shafer Theory: A New Perspective
    Jirousek, Radim
    Shenoy, Prakash P.
    [J]. BELIEF FUNCTIONS: THEORY AND APPLICATIONS, (BELIEF 2016), 2016, 9861 : 3 - 13
  • [3] A new definition of entropy of belief functions in the Dempster-Shafer theory
    Jirousek, Radim
    Shenoy, Prakash P.
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2018, 92 : 49 - 65
  • [4] A modified belief entropy in Dempster-Shafer framework
    Zhou, Deyun
    Tang, Yongchuan
    Jiang, Wen
    [J]. PLOS ONE, 2017, 12 (05):
  • [5] On Distinct Belief Functions in the Dempster-Shafer Theory
    Shenoy, Prakash P.
    [J]. INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS, VOL 215, 2023, 215 : 426 - 437
  • [6] On Conditional Belief Functions in the Dempster-Shafer Theory
    Jirousek, Radim
    Kratochvil, Vaclav
    Shenoy, Prakash P.
    [J]. BELIEF FUNCTIONS: THEORY AND APPLICATIONS (BELIEF 2022), 2022, 13506 : 207 - 218
  • [7] Parametric estimation of Dempster-Shafer belief functions
    Zribi, M
    Benjelloun, M
    [J]. FUSION 2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE OF INFORMATION FUSION, VOLS 1 AND 2, 2003, : 485 - 491
  • [8] Entropy for evaluation of Dempster-Shafer belief function models
    Jirousek, Radim
    Kratochvil, Vaclav
    Shenoy, Prakash P.
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 151 : 164 - 181
  • [9] A new definition of entropy of belief functions in the Dempster–Shafer theory
    [J]. Jiroušek, Radim (radim@utia.cas.cz), 1600, Elsevier Inc. (92):
  • [10] ON BELIEF FUNCTIONS - (PRESENT STATE OF DEMPSTER-SHAFER THEORY)
    HAJEK, P
    HARMANEC, D
    [J]. LECTURE NOTES IN ARTIFICIAL INTELLIGENCE, 1992, 617 : 286 - 307