Mechanical properties and microscopic deformation mechanism of polycrystalline magnesium under high-strain-rate compressive loadings

被引:60
|
作者
Li, Qizhen [1 ]
机构
[1] Univ Nevada, Dept Chem & Mat Engn, Reno, NV 89557 USA
关键词
Magnesium; Dynamic loading; Deformation mechanism; Twinning; Recrystallization; BEHAVIOR; ALLOYS; ALUMINUM; METALS;
D O I
10.1016/j.msea.2012.01.116
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Polycrystalline magnesium was compressed under different strain rates (0.001, 800, 1000, 2000, and 3600 s(-1)) to investigate its dynamic mechanical properties, and microstructural characterization was performed to uncover the deformation mechanism. The results show that yield strength is insensitive to strain rate, while ultimate strength, fracture strain, and work hardening rate are highly sensitive to strain rate. Three deformation regimes (I, II, and III) were observed on the quasi-static and dynamic stress-strain curves. These regimes show respectively increasing work hardening rate in the early stage of plastic deformation, constant work hardening rate in the intermediate plastic deformation region, and decreasing work hardening rate in the end region right before fracture. Different deformation mechanisms operate for the quasi-static and dynamic loading conditions. Microscopically, twinning/detwinning is the dominating mechanism for quasi-static testing, while dynamic recrystallization and twinning/detwinning are the dominating mechanisms for dynamic testing. Analytic constitutive models were derived for predicting the dynamic stress-strain relations. The analysis indicated that different factors were in effect for different loading strain rates. The stress-strain relations were primarily affected by strain hardening for quasi-static testing; by strain hardening, strain rate hardening, and thermal softening for dynamic testing with (epsilon) over dot <= 2000 s(-1); and by strain hardening, damping, and thermal softening for dynamic testing with (epsilon) over dot > 2000s(-1), respectively. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:130 / 134
页数:5
相关论文
共 50 条
  • [1] Microstructure and deformation mechanism of 0001 magnesium single crystal subjected to quasistatic and high-strain-rate compressive loadings
    Li, Qizhen
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 568 : 96 - 101
  • [2] Compressive mechanical properties of sawdust/high density polyethylene composites under various strain rate loadings
    Jaya, Haliza
    Omar, Mohd Firdaus
    Akil, Hazizan Md
    Ahmad, Zainal Arifin
    Zulkepli, Nik Noriman
    Abdullah, Mohd Mustafa Al Bakri
    JOURNAL OF VINYL & ADDITIVE TECHNOLOGY, 2018, 24 (02): : 162 - 173
  • [3] High-Strain-Rate Deformation: Mechanical Behavior and Deformation Substructures Induced
    Gray, George T. , III
    ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 42, 2012, 42 : 285 - 303
  • [4] High-entropy CoCrFeMnNi alloy subjected to high-strain-rate compressive deformation
    Tsai, Shao-Pu
    Tsai, Yu-Ting
    Chen, Yu-Wen
    Chen, Pin-Jung
    Chiu, Po-Han
    Chen, Chih-Yuan
    Lee, Woei-Shyan
    Yeh, Jien-Wei
    Yang, Jer-Ren
    MATERIALS CHARACTERIZATION, 2019, 147 : 193 - 198
  • [5] Mechanical and structural aspects of high-strain-rate deformation of NiTi alloy
    Bragov, A. M.
    Danilov, A. N.
    Konstantinov, A. Yu.
    Lomunov, A. K.
    Motorin, A. S.
    Razov, A. I.
    PHYSICS OF METALS AND METALLOGRAPHY, 2015, 116 (04): : 385 - 392
  • [6] Mechanical and structural aspects of high-strain-rate deformation of NiTi alloy
    A. M. Bragov
    A. N. Danilov
    A. Yu. Konstantinov
    A. K. Lomunov
    A. S. Motorin
    A. I. Razov
    The Physics of Metals and Metallography, 2015, 116 : 385 - 392
  • [7] Strain hardenability of a gradient metallic alloy under high-strain-rate compressive loading
    Fan, Jitang
    Jiang, Minqiang
    MATERIALS & DESIGN, 2019, 170
  • [8] THE HIGH-STRAIN-RATE DEFORMATION AND FRACTURE OF MATERIALS
    PLETKA, B
    JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 1995, 47 (05): : 54 - 54
  • [9] Compressive Mechanical Properties of Gradient Structured CrCoNi Medium-Entropy Alloy under High-Temperature and High-Strain-Rate Coupling
    Xu, Xiangqian
    Xu, Jianguo
    Shang, Xiongtao
    Guo, Xiaofan
    Wang, Lei
    Su, Shikai
    Xi, Yuntao
    Zhang, Keren
    Li, Jinguang
    Xu, Shanna
    Liu, Haitao
    Xiao, Xinke
    Zhang, Wei
    Liu, Ruifan
    Ji, Jiangtao
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [10] Mechanical behavior of geopolymer concrete subjected to high strain rate compressive loadings
    Ke Nan Feng
    Dong Ruan
    Zhu Pan
    Frank Collins
    Yu Bai
    C. M. Wang
    Wen Hui Duan
    Materials and Structures, 2015, 48 : 671 - 681