The ensemble approach to neural-network learning and generalization

被引:47
|
作者
Igelnik, B [1 ]
Pao, YH
LeClair, SR
Shen, CY
机构
[1] Case Western Reserve Univ, Cleveland, OH 44106 USA
[2] AI WARE Inc, Beachwood, OH 44122 USA
[3] Wright Lab, Mat Directorate, Wright Patterson AFB, OH 45433 USA
[4] China State Shipbldg Co, Res & Dev Acad, Beijing, Peoples R China
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1999年 / 10卷 / 01期
关键词
adaptive stochastic optimization; basis functions; ensemble of nets; recursive linear regression;
D O I
10.1109/72.737490
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper a new method is suggested for learning and generalization with a general one-hidden layer feedforward neural network. This scheme encompasses the use of a linear combination of heterogeneous nodes having randomly prescribed parameter values. The learning of the parameters is realized through adaptive stochastic optimization using a generalization data set. The learning of the linear coefficients in the linear combination of nodes is achieved with a linear regression method using data from the training set. One node is learned at a time. The method allows for choosing the proper number of net nodes, and is computationally efficient. The method was tested on mathematical examples and real problems from materials science and technology.
引用
收藏
页码:19 / 30
页数:12
相关论文
共 50 条
  • [1] GENERALIZATION IN A DILUTED NEURAL-NETWORK
    DASILVA, CR
    TAMARIT, FA
    LEMKE, N
    ARENZON, JJ
    CURADO, EMF
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (06): : 1593 - 1602
  • [2] ON THE GENERALIZATION ABILITY OF NEURAL-NETWORK CLASSIFIERS
    MUSAVI, MT
    CHAN, KH
    HUMMELS, DM
    KALANTRI, K
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (06) : 659 - 663
  • [3] Effective Neural Network Ensemble Approach for Improving Generalization Performance
    Yang, Jing
    Zeng, Xiaoqin
    Zhong, Shuiming
    Wu, Shengli
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (06) : 878 - 887
  • [4] NEURAL-NETWORK APPROACH TO GENERATING THE LEARNING-CURVE
    WANG, SH
    [J]. INFOR, 1993, 31 (03) : 136 - 150
  • [5] A parallel learning approach for neural network ensemble
    Wang, ZQ
    Chen, SF
    Chen, ZQ
    Xie, JY
    [J]. AI 2004: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 3339 : 1200 - 1205
  • [6] GENERALIZATION IN A 2-LAYER NEURAL-NETWORK
    KANG, KJ
    OH, JH
    KWON, C
    PARK, Y
    [J]. PHYSICAL REVIEW E, 1993, 48 (06): : 4805 - 4809
  • [7] ON OPTIMAL NEURAL-NETWORK LEARNING
    WATKIN, TLH
    [J]. PHYSICA A, 1993, 200 (1-4): : 628 - 635
  • [8] QUERY CONSTRUCTION, ENTROPY, AND GENERALIZATION IN NEURAL-NETWORK MODELS
    SOLLICH, P
    [J]. PHYSICAL REVIEW E, 1994, 49 (05): : 4637 - 4651
  • [9] Generating accurate and diverse members of a neural-network ensemble
    Opitz, DW
    Shavlik, JW
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 8: PROCEEDINGS OF THE 1995 CONFERENCE, 1996, 8 : 535 - 541
  • [10] AN OPTOELECTRONIC NEURAL-NETWORK WITH ONLINE LEARNING
    PIGNON, D
    HALL, TJ
    XU, LQ
    RUSS, KB
    CHERRY, SR
    ROBERTS, NC
    PREWETT, P
    HALLOWELL, P
    [J]. OPTICAL COMPUTING, 1995, 139 : 399 - 402