FXLOGRLP: THE FILTERED-X LOGARITHMIC RECURSIVE LEAST P-POWER ALGORITHM

被引:1
|
作者
Zheng, Zongsheng [1 ]
Lu, Lu [2 ]
Yu, Yi [3 ]
de Lamare, Rodrigo C. [4 ,5 ]
Liu, Zhigang [6 ]
机构
[1] Sichuan Univ, Coll Elect Engn, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Sch Elect & Informat Engn, Chengdu 610065, Peoples R China
[3] Southwest Univ Sci & Technol, Sch Informat Engn, Robot Technol Used Special Environm Key Lab Sichu, Mianyang 621010, Sichuan, Peoples R China
[4] Pontificia Univ Catolica Rio de Janeiro, CETUC, BR-22451900 Rio de Janeiro, Brazil
[5] Univ York, Dept Elect Engn, York YO10 5DD, N Yorkshire, England
[6] Southwest Jiaotong Univ, Sch Elect Engn, Chengdu 610031, Peoples R China
来源
2021 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP) | 2021年
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Active impulsive noise control; filtered-x recursive least p-power (FxRLP); filtered-x logarithmic recursive least p-power (FxlogRLP); impulsive noise; ACTIVE NOISE-CONTROL; PERFORMANCE; DESIGN;
D O I
10.1109/SSP49050.2021.9513827
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For active impulsive noise control, a filtered-x recursive least p-power (FxRLP) algorithm is proposed by minimizing the weighted summation of the p-power of the a posteriori errors. Since the characteristic of the target noise is investigated, the FxRLP algorithm achieves good performance and robustness. To obtain a better performance, we develop a filtered-x logarithmic recursive least p-power (FxlogRLP) algorithm which integrates the p-order moment with the logarithmic-order moment. Simulation results demonstrate that the FxlogRLP algorithm is superior to the existing algorithms in terms of convergence rate and noise reduction.
引用
收藏
页码:16 / 20
页数:5
相关论文
共 50 条
  • [1] EXPONENTIALLY WEIGHTED KERNEL RECURSIVE LEAST P-POWER ALGORITHM
    Gao, Wei
    Ruan, Pengchen
    Li, Jie
    Xu, Tianfang
    CONFERENCE PROCEEDINGS OF 2019 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (IEEE ICSPCC 2019), 2019,
  • [2] Improving robustness of filtered-x least mean p-power algorithm for active attenuation of standard symmetric-α-stable impulsive noise
    Akhtar, Muhammad Tahir
    Mitsuhashi, Wataru
    APPLIED ACOUSTICS, 2011, 72 (09) : 688 - 694
  • [3] Robust Constrained Recursive Least P-Power Algorithm for Adaptive Filtering
    Sun, Jiajun
    Peng, Siyuan
    Liu, Qinglai
    Zhao, Ruijie
    Lin, Zhiping
    2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2018,
  • [4] An Extension to the Filtered-x LMS Algorithm with Logarithmic Transformation
    Pawelczyk, Marek
    Wierzchowski, Witold
    Wu, Lifu
    Qiu, Xiaojun
    2015 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2015, : 454 - 459
  • [5] Random Fourier Features Extended Kernel Recursive Least p-Power Algorithm
    Gao, Wei
    Xu, Yi
    Huang, Lihuan
    2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,
  • [6] Kernel Least Mean p-Power Algorithm
    Gao, Wei
    Chen, Jie
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (07) : 996 - 1000
  • [7] Recursive least mean p-power Extreme Learning Machine
    Yang, Jing
    Ye, Feng
    Rong, Hai-Jun
    Chen, Badong
    NEURAL NETWORKS, 2017, 91 : 22 - 33
  • [8] MODIFIED FILTERED-X DICHOTOMOUS COORDINATE DESCENT RECURSIVE AFFINE PROJECTION ALGORITHM
    Albu, Felix
    Zakharov, Yuriy
    Paleologu, Constantin
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 257 - +
  • [9] Constrained Least Mean P-Power Error Algorithm
    Peng Siyuan
    Wu Zongze
    Chen Badong
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 5160 - 5163
  • [10] ANALYSIS OF THE FILTERED-X LMS ALGORITHM
    BJARNASON, E
    IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 1995, 3 (06): : 504 - 514