HODGE STRUCTURES OF THE MODULI SPACES OF PAIRS

被引:3
|
作者
Munoz, Vicente [1 ]
机构
[1] Univ Complutense Madrid, Fac Matemat, E-28040 Madrid, Spain
关键词
Moduli space; complex curve; holomorphic bundle; Hodge structure; POLYNOMIALS; TRIPLES; BUNDLES;
D O I
10.1142/S0129167X10006604
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a smooth projective curve of genus g >= 2 over C. Fix n >= 2, d epsilon Z. A pair (E, phi) over X consists of an algebraic vector bundle E of rank n and degree d over X and a section phi epsilon H(0)(E). There is a concept of stability for pairs which depends on a real parameter tau. Let M(T) (n, d) be the moduli space of tau-semistable pairs of rank n and degree d over X. Here we prove that the cohomology groups of M(T) (n, d) are Hodge structures isomorphic to direct summands of tensor products of the Hodge structure H(1)(X). This implies a similar result for the moduli spaces of stable vector bundles over X.
引用
收藏
页码:1505 / 1529
页数:25
相关论文
共 50 条