Meshless geometric subdivision

被引:2
|
作者
Moenning, C.
Memoli, F.
Sapiro, G.
Dyn, N.
Dodgson, N. A.
机构
[1] Univ Cambridge, Comp Lab, Cambridge CB3 0FD, England
[2] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
[3] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
subdivision; point-sampled geometry; point-based surface processing; fast marching level set methods; denoising smoothing; intrinsic mean; geodesic centroid;
D O I
10.1016/j.gmod.2006.11.001
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Point-based surface processing has developed into an attractive alternative to mesh-based processing tools for a number of geometric modeling applications. By working with point clouds directly, processing is based on the raw data and its underlying geometry rather than any arbitrary intermediate representations and generally artificial connectivity relations. We extend this principle into the area of subdivision surfaces by introducing the notion of meshless geometric subdivision. Our approach replaces the role of mesh connectivity with intrinsic point proximity thereby avoiding a number of limitations of mesh-based surface subdivision schemes. Apart from introducing this idea of meshless subdivision, we put forward a first intrinsic meshless subdivision scheme and present a new method for the computation of intrinsic means on Euclidean manifolds. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:160 / 179
页数:20
相关论文
共 50 条
  • [1] Subdivision schemes in geometric modeling
    Hormann, Kai
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2012, 5
  • [2] A geometric approach for Hermite subdivision
    Paolo Costantini
    Carla Manni
    Numerische Mathematik, 2010, 115 : 333 - 369
  • [3] Subdivision Schemes for Geometric Modelling
    Hormann, Kai
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2012, 5
  • [4] A geometric approach for Hermite subdivision
    Costantini, Paolo
    Manni, Carla
    NUMERISCHE MATHEMATIK, 2010, 115 (03) : 333 - 369
  • [5] Convergence of geometric subdivision schemes
    Ewald, Tobias
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 41 - 52
  • [6] Subdivision schemes in geometric modeling
    Hormann, Kai
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2012, 5
  • [7] Combinatorics and Algebra of Geometric Subdivision Operations
    Mohammadi, Fatemeh
    Welker, Volkmar
    COMPUTATIONS AND COMBINATORICS IN COMMUTATIVE ALGEBRA, 2017, 2176 : 75 - 120
  • [8] Surface interpolation of meshes by geometric subdivision
    Yang, XN
    COMPUTER-AIDED DESIGN, 2005, 37 (05) : 497 - 508
  • [9] Holder Regularity of Geometric Subdivision Schemes
    Ewald, T.
    Reif, U.
    Sabin, M.
    CONSTRUCTIVE APPROXIMATION, 2015, 42 (03) : 425 - 458
  • [10] A cascadic geometric filtering approach to subdivision
    Diewald, U
    Morigi, S
    Rumpf, M
    COMPUTER AIDED GEOMETRIC DESIGN, 2002, 19 (09) : 675 - 694