Viable constraint on scalar field in scalar-tensor theory

被引:5
|
作者
Geng, Chao-Qiang [1 ,2 ,3 ,4 ]
Kuan, Hao-Jui [3 ]
Luo, Ling-Wei [5 ]
机构
[1] UCAS, Hangzhou Inst Adv Study, Sch Fundamental Phys & Math Sci, Hangzhou 310024, Peoples R China
[2] Int Ctr Theoret Phys Asia Pacific, Beijing, Peoples R China
[3] Natl Tsing Hua Univ, Dept Phys, Hsinchu 300, Taiwan
[4] Natl Ctr Theoret Sci, Phys Div, Hsinchu 300, Taiwan
[5] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
关键词
scalar-tensor theory; Jordan frame; Einstein frame; Brans-Dicke theory; MACHS PRINCIPLE; GRAVITY; RELATIVITY;
D O I
10.1088/1361-6382/ab86fb
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The scalar-tensor theory can be formulated in both Jordan and Einstein frames, which are conformally related together with a redefinition of the scalar field. As the solution to the equation of the scalar field in the Jordan frame does not have the one-to-one correspondence with that in the Einstein frame, we give a criterion along with some specific models to check if the scalar field in the Einstein frame is viable or not by confirming whether this field is reversible back to the Jordan frame. We further show that the criterion in the first parameterized post-Newtonian approximation can be determined by the parameters of the osculating approximation of the coupling function in the Einstein frame and can be treated as a viable constraint on any numerical study in the scalar-tensor scenario. We also demonstrate that the Brans-Dicke theory with an infinite constant parameter omega(BD) is a counterexample of the equivalence between two conformal frames due to the violation of the viable constraint.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Lyra scalar-tensor theory: A scalar-tensor theory of gravity on Lyra manifold
    Cuzinatto, R. R.
    de Morais, E. M.
    Pimentel, B. M.
    [J]. PHYSICAL REVIEW D, 2021, 103 (12)
  • [2] Cosmological evolution of viable models in the generalized scalar-tensor theory
    Arai, Shun
    Karmakar, Purnendu
    Nishizawa, Atsushi
    [J]. PHYSICAL REVIEW D, 2020, 102 (02)
  • [3] Gravitational scalar-tensor theory
    Naruko, Atsushi
    Yoshida, Daisuke
    Mukohyama, Shinji
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (09)
  • [4] SCALAR-TENSOR THEORY OF GRAVITATION
    SAKHAROV, AD
    [J]. JETP LETTERS, 1975, 20 (03) : 81 - 82
  • [5] SCALAR-TENSOR THEORY OF GRAVITATION
    ROSS, DK
    [J]. PHYSICAL REVIEW D, 1972, 5 (02): : 284 - &
  • [6] SCALAR-TENSOR THEORY OF GRAVITATION
    DUNN, KA
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (12) : 2229 - 2231
  • [7] FIELD EQUATIONS OF A CONFORMALLY INVARIANT, SCALAR-TENSOR THEORY
    BICKNELL, GV
    KLOTZ, AH
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (10): : 1637 - 1645
  • [8] Field of a charged particle in a scalar-tensor theory of gravitation
    D. R. K. Reddy
    T. Vidyasagar
    B. Satyanarayana
    [J]. Astrophysics and Space Science, 2012, 342 : 245 - 247
  • [9] Field of a charged particle in a scalar-tensor theory of gravitation
    Reddy, D. R. K.
    Vidyasagar, T.
    Satyanarayana, B.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2012, 342 (01) : 245 - 247
  • [10] Higher derivative scalar-tensor theory through a non-dynamical scalar field
    Gao, Xian
    Yamaguchi, Masahide
    Yoshida, Daisuke
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (03):