Epitope mapping and biological function analysis of antibodies produced by immunization of mice with an inactivated Chinese isolate of severe acute respiratory syndrome-associated coronavirus (SARS-CoV)

被引:22
|
作者
Chou, THW
Wang, SX
Sakhatskyy, PV
Mboudoudjeck, I
Lawrence, JM
Huang, S
Coley, S
Yang, BA
Li, JM
Zhu, QY
Lu, S
机构
[1] Univ Massachusetts, Sch Med, Dept Med, Lab Nucle Acid Vaccines, Worcester, MA 01605 USA
[2] Acad Mil Med Sci, Inst Microbiol & Epidemiol, Beijing 100071, Peoples R China
关键词
SARS-CoV; monoclonal antibody; epitope mapping; inactivated vaccine;
D O I
10.1016/j.virol.2005.01.035
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Inactivated severe acute respiratory syndrome-associated coronavirus (SARS-CoV) has been tested as a candidate vaccine against the reemergence of SARS. In order to understand the efficacy and safety of this approach, it is important to know the antibody specificities generated with inactivated SARS-CoV. In the current study, a panel of twelve monoclonal antibodies (mAbs) was established by immunizing Balb/c mice with the inactivated BJ01 strain of SARS-CoV isolated from the lung tissue of a SARS-infected Chinese patient. These mAbs could recognize SARS-CoV-Infected cells by immunofluorescence analysis (IFA). Seven of them were mapped to the specific segments of recombinant spike (S) protein: six on SI subunit (aa 12-798) and one on S2 subunit (aa 797-1192). High neutralizing titers against SARS-CoV were detected with two mAbs (1A5 and 2C5) targeting at a subdomain of S protein (aa 310-535), consistent with the previous report that this segment of S protein contains the major neutralizing domain. Some of these S-specific mAbs were able to recognize cleaved products of S protein in SARS-CoV-infected Vero E6 cells. None of the remaining five mAbs could recognize either of the recombinant S, N, M, or E antigens by ELISA. This study demonstrated that the inactivated SARS-CoV was able to preserve the immunogenicity of S protein including its major neutralizing domain. The relative ease with which these mAbs were generated against SARS-CoV virions further supports that subunit vaccination with S constructs may also be able to protect animals and perhaps humans. It is somewhat unexpected that no N-specific mAbs were identified albeit anti-NIgG was easily identified in SARS-CoV-infected patients. The availability of this panel of mAbs also provided potentially useful agents with applications in therapy, diagnosis, and basic research of SARS-CoV. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:134 / 143
页数:10
相关论文
共 50 条
  • [1] Epitope mapping and biological function analysis of antibodies produced by immunization of mice with an inactivated Chinese isolate of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) (vol 334, pg 134, 2005)
    Chou, THW
    Wang, SX
    Sakhatskyy, PV
    Mboudjeka, I
    Lawrence, JM
    Huang, S
    Coley, S
    Yang, B
    Li, JM
    Zhu, QY
    Lu, S
    VIROLOGY, 2005, 337 (01) : 204 - 204
  • [2] Molecular Advances in Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV)
    Raymond Kin Hi Hui
    Raymond Tsz Yeung Wong
    Chi Wai Yip
    Frederick Chi Ching Leung
    Genomics Proteomics & Bioinformatics, 2003, (04) : 247 - 262
  • [3] Prior Immunization with Severe Acute Respiratory Syndrome (SARS)-Associated Coronavirus (SARS-CoV) Nucleocapsid Protein Causes Severe Pneumonia in Mice Infected with SARS-CoV
    Yasui, Fumihiko
    Kai, Chieko
    Kitabatake, Masahiro
    Inoue, Shingo
    Yoneda, Misako
    Yokochi, Shoji
    Kase, Ryoichi
    Sekiguchi, Satoshi
    Morita, Kouichi
    Hishima, Tsunekazu
    Suzuki, Hidenori
    Karamatsu, Katsuo
    Yasutomi, Yasuhiro
    Shida, Hisatoshi
    Kidokoro, Minoru
    Mizuno, Kyosuke
    Matsushima, Kouji
    Kohara, Michinori
    JOURNAL OF IMMUNOLOGY, 2008, 181 (09): : 6337 - 6348
  • [4] Intranasal immunization with inactivated SARS-CoV (SARS-associated coronavirus) induced local and serum antibodies in mice
    Qu, D
    Zheng, BJ
    Yao, X
    Guan, Y
    Yuan, ZH
    Zhong, NS
    Lu, LW
    Xie, JP
    Wen, YM
    VACCINE, 2005, 23 (07) : 924 - 931
  • [5] Diagnostics of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) nucleocapsid antigen using chicken immunoglobulin Y
    Palaniyappan, A.
    Das, D.
    Kammila, S.
    Suresh, M. R.
    Sunwoo, H. H.
    POULTRY SCIENCE, 2012, 91 (03) : 636 - 642
  • [6] Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein
    Sainz, Bruno, Jr.
    Mossel, Eric C.
    Gallaher, William R.
    Wimley, William C.
    Peters, C. J.
    Wilson, Russell B.
    Garry, Robert F.
    VIRUS RESEARCH, 2006, 120 (1-2) : 146 - 155
  • [7] Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry
    Simmons, G
    Reeves, JD
    Rennekamp, AJ
    Amberg, SM
    Piefer, AJ
    Bates, P
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (12) : 4240 - 4245
  • [8] Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV
    Darnell, MER
    Subbarao, K
    Feinstone, SM
    Taylor, DR
    JOURNAL OF VIROLOGICAL METHODS, 2004, 121 (01) : 85 - 91
  • [9] SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS (SARS-CoV) : METHODS OF DIAGNOSIS AND TREATMENT
    Bhargava, Shivanshi
    Singh, Aditi
    EVERYMANS SCIENCE, 2020, 54 (06): : 361 - 367
  • [10] Synthetic peptide studies on severe acute respiratory syndrome coronavirus (SARS-CoV)
    Chu, LHM
    Choy, WY
    Waye, MMY
    Ngai, SM
    FEBS JOURNAL, 2005, 272 : 140 - 141