New convergence proofs of modulus-based synchronous multisplitting iteration methods for linear complementarity problems

被引:13
|
作者
Zhang, Li-Li [1 ]
Zhang, Yun-Peng [2 ]
Ren, Zhi-Ru [3 ]
机构
[1] Henan Univ Econ & Law, Sch Math & Informat Sci, Zhengzhou 450046, Henan, Peoples R China
[2] North China Univ Water Resources & Elect Power, Coll Elect Power, Zhengzhou 450011, Henan, Peoples R China
[3] Cent Univ Finance & Econ, Sch Math & Stat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear complementarity problem; Modulus-based method; Matrix multisplitting; Convergence; H+-MATRIX; SPLITTINGS;
D O I
10.1016/j.laa.2015.04.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Modulus-based synchronous multisplitting iteration methods were recently proposed for solving linear complementarity problems. We give a much simpler approach to prove the convergence of these iteration methods when the system matrix is an H+-matrix. Moreover, this idea can also be applied to prove the convergence of two-step modulus-based synchronous multisplitting iteration methods, which avoids the construction of the irreducible system matrix and the introduction of the infinite norm. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:83 / 93
页数:11
相关论文
共 50 条
  • [1] Modulus-based synchronous multisplitting iteration methods for linear complementarity problems
    Bai, Zhong-Zhi
    Zhang, Li-Li
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (03) : 425 - 439
  • [2] A class of modified modulus-based synchronous multisplitting iteration methods for linear complementarity problems
    Weiwei Xu
    Lei Zhu
    Xiaofei Peng
    Hao Liu
    Junfeng Yin
    Numerical Algorithms, 2020, 85 : 1 - 21
  • [3] A class of modified modulus-based synchronous multisplitting iteration methods for linear complementarity problems
    Xu, Weiwei
    Zhu, Lei
    Peng, Xiaofei
    Liu, Hao
    Yin, Junfeng
    NUMERICAL ALGORITHMS, 2020, 85 (01) : 1 - 21
  • [4] Modulus-based synchronous multisplitting iteration methods for large sparse vertical linear complementarity problems
    Zheng, Hua
    Zhang, Yongxiong
    Lu, Xiaoping
    Vong, Seakweng
    NUMERICAL ALGORITHMS, 2023, 93 (02) : 711 - 729
  • [5] Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems
    Zhong-Zhi Bai
    Li-Li Zhang
    Numerical Algorithms, 2013, 62 : 59 - 77
  • [6] Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems
    Bai, Zhong-Zhi
    Zhang, Li-Li
    NUMERICAL ALGORITHMS, 2013, 62 (01) : 59 - 77
  • [7] TWO-STEP MODULUS-BASED SYNCHRONOUS MULTISPLITTING ITERATION METHODS FOR LINEAR COMPLEMENTARITY PROBLEMS
    Zhang, Lili
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2015, 33 (01): : 100 - 112
  • [8] Modulus-based synchronous multisplitting iteration methods for large sparse vertical linear complementarity problems
    Hua Zheng
    Yongxiong Zhang
    Xiaoping Lu
    Seakweng Vong
    Numerical Algorithms, 2023, 93 : 711 - 729
  • [9] New convergence of modulus-based synchronous block multisplitting multi-parameter methods for linear complementarity problems
    Zhang, Li-Tao
    Zhang, Yu-Xia
    Gu, Tong-Xiang
    Liu, Xing-Ping
    Zhang, Liu-Wei
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (01): : 481 - 492
  • [10] New convergence of modulus-based synchronous block multisplitting multi-parameter methods for linear complementarity problems
    Li-Tao Zhang
    Yu-Xia Zhang
    Tong-Xiang Gu
    Xing-Ping Liu
    Liu-Wei Zhang
    Computational and Applied Mathematics, 2017, 36 : 481 - 492