Encapsulation of Microorganisms, Enzymes, and Redox Mediators in Graphene Oxide and Reduced Graphene Oxide

被引:6
|
作者
Schlesinger, Orr [1 ,2 ]
Alfonta, Lital [1 ,2 ]
机构
[1] Ben Gurion Univ Negev, Dept Life Sci, Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Ilse Katz Inst Nanoscale Sci & Technol, Beer Sheva, Israel
关键词
YEAST SURFACE DISPLAY; ELECTRON-TRANSFER; GLUCOSE-OXIDASE; REDUCTION; GRAPHITE; SPECTROSCOPY; NANOSHEETS;
D O I
10.1016/bs.mie.2018.05.008
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Graphene oxide (GO) and reduced graphene oxide (rGO) were demonstrated in the past decade as biocompatible carbon-based materials that could be efficiently used in bioelectrochemical systems (BESs). Specifically, for redox enzyme encapsulation in order to improve electron communication between enzymes and electrodes. The addition of GO to different solvents was shown to cause gelation while still allowing small molecule diffusion through its gel-like matrix. Taking the combination of these traits together, we decided to use GO hydrogels for the encapsulation of enzymes displayed on the surface of yeast in anodes of microbial fuel cells. During our studies we have followed the changes in the physical characteristics of GO upon encapsulation of yeast cells displaying glucose oxidase in the presence of glucose and noted that GO is being rapidly reduced to rGO as a function of glucose concentrations. GO reduction under these conditions served as a proof of electron communication between the surface-displayed enzymes and GO. Hence, we set out to study this phenomenon by the encapsulation of a purified glucose dehydrogenase (in the absence of microbial cells) in rGO where improved electron transfer to the electrode could be observed in the presence of phenothiazone. In this chapter, we describe how these systems were technically constructed and characterized and how a very affordable matrix such as GO could be used to electrically wire enzymes as a good replacement for expensive mediator containing redox active polymers commonly used in BESs.
引用
收藏
页码:197 / 219
页数:23
相关论文
共 50 条
  • [1] Dispersion behaviour of graphene oxide and reduced graphene oxide
    Konios, Dimitrios
    Stylianakis, Minas M.
    Stratakis, Emmanuel
    Kymakis, Emmanuel
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2014, 430 : 108 - 112
  • [2] Reduced graphene oxide
    Tkachev, S. V.
    Buslaeva, E. Yu
    Naumkin, A. V.
    Kotova, S. L.
    Laure, I. V.
    Gubin, S. P.
    INORGANIC MATERIALS, 2012, 48 (08) : 796 - 802
  • [3] Reduced graphene oxide
    S. V. Tkachev
    E. Yu. Buslaeva
    A. V. Naumkin
    S. L. Kotova
    I. V. Laure
    S. P. Gubin
    Inorganic Materials, 2012, 48 : 796 - 802
  • [4] Effect of graphene oxide, reduced graphene oxide, silver and reduced graphene oxide/silver nanohybrid on hydroxypropyl methylcellulose nanocomposites
    Roy, Indranil
    Ghosh, Tapas Kumar
    Rana, Dipak
    Sadhukhan, Sourav
    Bhattacharyya, Amartya
    Sarkar, Gunjan
    Bhowmick, Kuheli
    Ghosh, Adrija
    Chakraborty, Mukut
    Chattopadhyay, Dipankar
    BULLETIN OF MATERIALS SCIENCE, 2024, 47 (03)
  • [5] EPR and Impedance Measurements of Graphene Oxide and Reduced Graphene Oxide
    Kempinski, M.
    Los, S.
    Florczak, P.
    Kempinski, W.
    Jurga, S.
    ACTA PHYSICA POLONICA A, 2017, 132 (01) : 81 - 85
  • [6] Pool boiling experiments in graphene, graphene oxide and reduced graphene oxide nanofluid
    Singh, Sudhir Kumar
    Sharma, Deepak
    HEAT TRANSFER ENGINEERING, 2025,
  • [7] Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide
    Wojtoniszak, Malgorzata
    Chen, Xuecheng
    Kalenczuk, Ryszard J.
    Wajda, Anna
    Lapczuk, Joanna
    Kurzawski, Mateusz
    Drozdzik, Marek
    Chu, Pual K.
    Borowiak-Palen, Ewa
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2012, 89 : 79 - 85
  • [8] Photoconductivity of reduced graphene oxide and graphene oxide composite films
    Liang, Haifeng
    Ren, Wen
    Su, Junhong
    Cai, Changlong
    THIN SOLID FILMS, 2012, 521 : 163 - 167
  • [9] Environmental impact of the production of graphene oxide and reduced graphene oxide
    L. Serrano-Luján
    S. Víctor-Román
    C. Toledo
    O. Sanahuja-Parejo
    A. E. Mansour
    J. Abad
    A. Amassian
    A. M. Benito
    W. K. Maser
    A. Urbina
    SN Applied Sciences, 2019, 1
  • [10] Argon diffusion in graphene oxide and reduced graphene oxide foils
    Torrisi, L.
    Silipigni, L.
    Torrisi, A.
    VACUUM, 2022, 200