Evolution of complex singularities in Kida-Pelz and Taylor-Green inviscid flows

被引:42
|
作者
Cichowlas, C
Brachet, ME
机构
[1] Ecole Normale Super, Phys Stat Lab, CNRS, F-75231 Paris, France
[2] Univ Paris 06, F-75231 Paris, France
[3] Univ Paris 07, F-75231 Paris, France
关键词
Euler equation; interferences; complex singularities;
D O I
10.1016/j.fluiddyn.2004.09.005
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The analyticity strip method is used to trace complex singularities in direct numerical simulations of the Kida-Pelz and Taylor-Green flows, performed with up to 2048(3) collocation points. Oscillations found in the Kida-Pelz energy spectrum are attributed to interferences of complex singularities. A generalized least-square fit that separates out the oscillations from the measure of the width of the analyticity strip delta is introduced. Using the available resolution, delta is found to decay exponentially in time up to t = 1.25. It is argued that resolutions in the range 16384(3)-32768(3) (within reach of the Earth Simulator) are needed to really probe the Pelz singularity at t similar to 2. (c) 2005 Published by The Japan Society of Fluid Mechanics and Elsevier B.V. All rights reserved.
引用
收藏
页码:239 / 248
页数:10
相关论文
共 18 条
  • [1] Evolution of vortex-surface fields in viscous Taylor-Green and Kida-Pelz flows
    Yang, Yue
    Pullin, D. I.
    [J]. JOURNAL OF FLUID MECHANICS, 2011, 685 : 146 - 164
  • [2] On Lagrangian and vortex-surface fields for flows with Taylor-Green and Kida-Pelz initial conditions
    Yang, Yue
    Pullin, D. I.
    [J]. JOURNAL OF FLUID MECHANICS, 2010, 661 : 446 - 481
  • [3] Numerical convergence study of nearly incompressible, inviscid Taylor-Green vortex flow
    Shu, CW
    Don, WS
    Gottlieb, D
    Schilling, O
    Jameson, L
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2005, 24 (01) : 569 - 595
  • [4] Effects of the Mach number on the evolution of vortex-surface fields in compressible Taylor-Green flows
    Peng, Naifu
    Yang, Yue
    [J]. PHYSICAL REVIEW FLUIDS, 2018, 3 (01):
  • [5] Influence of Monotonization on the Spectral Resolution of Bicompact Schemes in the Inviscid Taylor-Green Vortex Problem
    Bragin, M. D.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2022, 62 (04) : 608 - 623
  • [6] Symmetry breaking of decaying magnetohydrodynamic Taylor-Green flows and consequences for universality
    Dallas, V.
    Alexakis, A.
    [J]. PHYSICAL REVIEW E, 2013, 88 (06):
  • [7] Numerical evidence of anomalous energy dissipation in incompressible Euler flows: towards grid-converged results for the inviscid Taylor-Green problem
    Fehn, Niklas
    Kronbichler, Martin
    Munch, Peter
    Wall, Wolfgang A.
    [J]. JOURNAL OF FLUID MECHANICS, 2021, 932
  • [8] Ideal evolution of magnetohydrodynamic turbulence when imposing Taylor-Green symmetries
    Brachet, M. E.
    Bustamante, M. D.
    Krstulovic, G.
    Mininni, P. D.
    Pouquet, A.
    Rosenberg, D.
    [J]. PHYSICAL REVIEW E, 2013, 87 (01):
  • [9] Structural evolution and breakage of dense agglomerates in shear flow and Taylor-Green vortex
    Ruan, Xuan
    Chen, Sheng
    Li, Shuiqing
    [J]. CHEMICAL ENGINEERING SCIENCE, 2020, 211
  • [10] Origins of the k-2 spectrum in decaying Taylor-Green magnetohydrodynamic turbulent flows
    Dallas, V.
    Alexakis, A.
    [J]. PHYSICAL REVIEW E, 2013, 88 (05)