Numerical solution of a reaction-diffusion elliptic interface problem with strong anisotropy

被引:18
|
作者
Braianov, I [1 ]
Vulkov, L [1 ]
机构
[1] Univ Rousse, Rousse 7017, Bulgaria
关键词
singular perturbation; reaction diffusion; elliptic interface problems; finite volume method; Shishkin mesh;
D O I
10.1007/s00607-003-0009-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider a singularly perturbed reaction-diffusion elliptic problem in two dimensions (x,y), with strongly anisotropic coefficients and line interface. The second order derivative with respect to x is multiplied by a small parameter epsilon(2). We construct finite volume difference schemes on condensed Shihskin meshes and prove epsilon-uniform convergence in discrete energy and maximum norms. Numerical experiments that agree with the theoretical results are given.
引用
收藏
页码:153 / 173
页数:21
相关论文
共 50 条