Incorporating self-consistent single-particle potentials into the microscopic-macroscopic method

被引:11
|
作者
Adamian, G. G. [1 ]
Malov, L. A. [1 ]
Antonenko, N. V. [1 ,2 ]
Lenske, H. [3 ]
Wang, Kun [4 ]
Zhou, Shan-Gui [4 ,5 ,6 ,7 ]
机构
[1] Joint Inst Nucl Res, Dubna 141980, Russia
[2] Tomsk Polytech Univ, Tomsk 634050, Russia
[3] Justus Liebig Univ, Inst Theoret Phys, D-35392 Giessen, Germany
[4] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Frontiers Theoret Phys, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[6] Natl Lab Heavy Ion Accelerator, Ctr Theoret Nucl Phys, Lanzhou 730000, Gansu, Peoples R China
[7] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Hunan, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL A | 2018年 / 54卷 / 10期
关键词
DENSITY-MATRIX EXPANSION; HARTREE-BOGOLIUBOV THEORY; GROUND-STATE PROPERTIES; SUPERHEAVY NUCLEI; FIELD-THEORY; MASSES; SYMMETRY; HEAVY;
D O I
10.1140/epja/i2018-12603-6
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Effective single-particle potentials obtained by self-consistent HFB calculations from the established non-relativistic and relativistic nuclear EDF approaches are incorporated into the microscopic-macroscopic method, a widely and successfully used approach for superheavy nuclei. We determine the Schrodinger-equivalent central and spin-orbit potentials incorporating effective mass effects. The method can be applied to non-relativistic and relativistic mean-fields. A parametrization in terms of the Wood-Saxon form is introduced to derive the proton and neutron potentials, appropriate for the microscopic-macroscopic method. As the first application, the extended microscopic-macroscopic approach is used to calculate the shell corrections in the heaviest nuclei. Constraints on parameters sets for central and spin-orbit potentials are derived for which the shell effects are amplified towards .
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Incorporating self-consistent single-particle potentials into the microscopic-macroscopic method
    G. G. Adamian
    L. A. Malov
    N. V. Antonenko
    H. Lenske
    Kun Wang
    Shan-Gui Zhou
    [J]. The European Physical Journal A, 2018, 54
  • [2] Microscopic-macroscopic method for studying single-particle level density of superheavy nuclei
    Bezbakh, A. N.
    Shneidman, T. M.
    Adamian, G. G.
    Antonenko, N. V.
    [J]. FAIRNESS 2013: FAIR NEXT GENERATION OF SCIENTISTS 2013, 2014, 503
  • [3] Self-consistent single-particle simulation
    Bufler, FM
    Zechner, C
    Schenk, A
    Fichtner, W
    [J]. SISPAD 2002: INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 2002, : 159 - 162
  • [4] SELF-CONSISTENT NUCLEAR SINGLE-PARTICLE HAMILTONIAN
    PANDHARIPANDE, VR
    PRASAD, KG
    [J]. NUCLEAR PHYSICS A, 1970, A147 (01) : 193 - +
  • [5] SELF-CONSISTENT SINGLE-PARTICLE THEORY OF TOKOMAKS
    LANDAU, RW
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (10): : 1355 - 1355
  • [7] Self-consistent projection operator method for the single-particle excitation spectrum
    Kakehashi, Y
    Fulde, P
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 272 : 400 - 401
  • [8] Self-consistent description of single-particle levels of magic nuclei
    Gnezdilov, N. V.
    Borzov, I. N.
    Saperstein, E. E.
    Tolokonnikov, S. V.
    [J]. PHYSICAL REVIEW C, 2014, 89 (03):
  • [9] A self-consistent single-particle theory of the cyclotron resonance maser
    McNeil, BWJ
    Robb, GRM
    Phelps, ADR
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1997, 30 (11) : 1688 - 1696
  • [10] Single-particle approach to self-consistent Monte Carlo device simulation
    Bufler, FM
    Zechner, C
    Schenk, A
    Fichtner, W
    [J]. IEICE TRANSACTIONS ON ELECTRONICS, 2003, E86C (03): : 308 - 313