Infrared spectra and density functional theory calculations for Mn+-(CH4)n (n=1-6) clusters

被引:15
|
作者
Dryza, Viktoras [1 ]
Bieske, Evan J. [1 ]
机构
[1] Univ Melbourne, Sch Chem, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Transition metal cation; Methane; Cluster; Infrared spectroscopy; TRANSITION-METAL CATIONS; C-H BONDS; MOLECULAR-COMPLEXES; METHANE ACTIVATION; AMMONIA; CH4; SPECTROSCOPY; BINDING; IONS; H2O;
D O I
10.1016/j.ijms.2010.05.017
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
Infrared spectra are measured for the mass-selected Mn(CH4)(n)(+) (n = 1-6) clusters in the C-H stretch region (2700-3100 cm(-1)) by monitoring photofragment ions. Accompanying density functional theory calculations are performed for possible structural isomers, including the Mn+-(CH4)(n) ion-molecule complexes in which the ligands are attached to the Mn+ ion in an eta(3) configuration, and the inserted H-Mn-CH3+-(CH4)(n-1) complexes. The experimental infrared spectra for all species are dominated by a single band, appearing at 2836 cm(-1) for n = 1 and progressively shifting to 2880 cm(-1) for n = 6. The observed infrared spectra match predicted spectra for Mn+-(CH4)(n) ion-molecule complexes containing Mn+ in its S-7 (4s(1) 3d(5)) electronic ground state, with the dominant band corresponding to the totally symmetric C-H stretching vibrations of the attached CH4 ligands. No evidence was found for clusters containing the Mn+ cation in its S-5 (4s(1)3d(5)) electronic state. In larger clusters, the CH4 ligands are generally bound to the Mn+ ion such that adjacent Mn+center dot center dot center dot C bonds are approximately at right angles to one another taking advantage of partial 4s/4p hybridization to minimise the CH4 molecules' repulsive interaction with the half-filled 4s orbital of Mn+. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 54
页数:9
相关论文
共 50 条
  • [1] Infrared spectra of mass-selected Al+-(CH4)n n=1-6 clusters
    Poad, B. L. J.
    Thompson, C. D.
    Bieske, E. J.
    CHEMICAL PHYSICS, 2008, 346 (1-3) : 176 - 181
  • [2] Infrared Spectroscopy of Li+(CH4)1Arn, n=1-6, Clusters
    Rodriguez, Oscar, Jr.
    Lisy, James M.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (07): : 1228 - 1233
  • [3] The study of NinH(n=1-6) clusters by density functional theory
    Zhang, Xiaozhen
    Wen, Junqing
    Bai, Liang
    2019 3RD INTERNATIONAL WORKSHOP ON RENEWABLE ENERGY AND DEVELOPMENT (IWRED 2019), 2019, 267
  • [4] A density functional theory investigation of CrSin (n=1-6) clusters
    Han, JG
    Hagelberg, F
    CHEMICAL PHYSICS, 2001, 263 (2-3) : 255 - 262
  • [5] Fe(CH4)n+ and Ni(CH4)n+ clusters:: experimental and theoretical bond energies for n=1-6
    Zhang, Q
    Kemper, PR
    Bowers, MT
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2001, 210 (1-3) : 265 - 281
  • [6] Infrared spectra and ab initio calculations for the F--(CH4)n (n=1-8) anion clusters
    Loh, Z. M.
    Wilson, R. L.
    Wild, D. A.
    Bieske, E. J.
    Lisy, J. M.
    Njegic, B.
    Gordon, M. S.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (51): : 13736 - 13743
  • [7] Infrared spectra and ab initio calculations for the Cl--(CH4)n (n=1-10) anion clusters
    Loh, ZM
    Wilson, RL
    Wild, DA
    Bieske, EJ
    Gordon, MS
    JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (38): : 8481 - 8486
  • [8] Structures of F--(CH4)n and Cl--(CH4)n (n=1,2) anion clusters elucidated through ab initio calculations and infrared spectra
    Loh, ZM
    Wilson, RL
    Wild, DA
    Bieske, EJ
    Gordon, MS
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2004, 57 (12) : 1157 - 1160
  • [9] Photoelectron Spectroscopy and Density Functional Theory Calculations of Binary VnC30/- (n=1-6) Clusters
    Yuan, Jinyun
    Wang, Peng
    Xu, Xiling
    Zhang, Yonghui
    He, Linghao
    Xu, Hong-Guang
    Hou, Gao-Lei
    Zheng, Wei-Jun
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2022, 35 (06) : 907 - 915
  • [10] Probing the Structures and Properties of Asymmetric Clusters (CH3ClBN3)n (n=1-6) with Density Functional Theory
    Xia, Qiying
    Ma, Dengxue
    Liu, Guokui
    Yao, Cuixia
    Leng, Xia
    Li, Yunzhi
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 94 (01) : 134 - 142