Gas Separations using Nanoporous Atomically Thin Membranes: Recent Theoretical, Simulation, and Experimental Advances

被引:46
|
作者
Yuan, Zhe [1 ]
He, Guangwei [1 ]
Li, Sylvia Xin [1 ]
Misra, Rahul Prasanna [1 ]
Strano, Michael S. [1 ]
Blankschtein, Daniel [1 ]
机构
[1] MIT, Dept Chem Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
2D materials; atomically thin membranes; gas separation; membrane separation; nanopores; HEXAGONAL BORON-NITRIDE; TUNABLE HYDROGEN SEPARATION; CHEMICAL-VAPOR-DEPOSITION; LAYER GRAPHENE MEMBRANES; HIGH-EFFICIENCY MEMBRANE; LARGE-AREA SYNTHESIS; POROUS GRAPHENE; CO2/N-2; SEPARATION; MOLECULAR SIMULATIONS; NANOSTRUCTURED CARBON;
D O I
10.1002/adma.202201472
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Porous graphene and other atomically thin 2D materials are regarded as highly promising membrane materials for high-performance gas separations due to their atomic thickness, large-scale synthesizability, excellent mechanical strength, and chemical stability. When these atomically thin materials contain a high areal density of gas-sieving nanoscale pores, they can exhibit both high gas permeances and high selectivities, which is beneficial for reducing the cost of gas-separation processes. Here, recent modeling and experimental advances in nanoporous atomically thin membranes for gas separations is discussed. The major challenges involved, including controlling pore size distributions, scaling up the membrane area, and matching theory with experimental results, are also highlighted. Finally, important future directions are proposed for real gas-separation applications of nanoporous atomically thin membranes.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] An experimental and theoretical analysis of molecular separations by diffusion through ultrathin nanoporous membranes
    Snyder, J. L.
    Clark, A., Jr.
    Fang, D. Z.
    Gaborski, T. R.
    Striemer, C. C.
    Fauchet, P. M.
    McGrath, J. L.
    JOURNAL OF MEMBRANE SCIENCE, 2011, 369 (1-2) : 119 - 129
  • [2] Screening of nanoporous membranes for CO2 separations using atomically-detailed simulations
    Sholl, David
    Keskin, Seda
    Jee, Sang Eun
    Chen, Haibin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 234
  • [3] Recent progress in molecular simulation of nanoporous graphene membranes for gas separation
    Fatemi, S. Mahmood
    Baniasadi, Aminreza
    Moradi, Mahrokh
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2017, 71 (01) : 54 - 62
  • [4] Recent progress in molecular simulation of nanoporous graphene membranes for gas separation
    S. Mahmood Fatemi
    Aminreza Baniasadi
    Mahrokh Moradi
    Journal of the Korean Physical Society, 2017, 71 : 54 - 62
  • [5] Recent Advances in Nanoporous Membranes for Water Purification
    Wang, Zhuqing
    Wu, Aiguo
    Ciacchi, Lucio Colombi
    Wei, Gang
    NANOMATERIALS, 2018, 8 (02)
  • [6] Nanoporous Atomically Thin Graphene Membranes for Desalting and Dialysis Applications
    Kidambi, Piran R.
    Jang, Doojoon
    Idrobo, Juan-Carlos
    Boutilier, Michael S. H.
    Wang, Luda
    Kong, Jing
    Karnik, Rohit
    ADVANCED MATERIALS, 2017, 29 (33)
  • [7] Understanding the Potential of Zeolite Imidazolate Framework Membranes in Gas Separations Using Atomically Detailed Calculations
    Atci, Erhan
    Keskin, Seda
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (29): : 15525 - 15537
  • [8] Scalable synthesis of nanoporous atomically thin graphene membranes for dialysis and molecular separations via facile isopropanol-assisted hot lamination
    Cheng, Peifu
    Moehring, Nicole K.
    Idrobo, Juan Carlos
    Ivanov, Ilia N.
    Kidambi, Piran R.
    NANOSCALE, 2021, 13 (05) : 2825 - 2837
  • [9] Computational Simulation of Gas Separation Using Nonporous Polymeric Membranes: Experimental and Theoretical Studies
    Marjani, Azam
    Abkhiz, Vahid
    Fadaei, Farzad
    POLYMER ENGINEERING AND SCIENCE, 2015, 55 (01): : 54 - 59
  • [10] Membranes for vapor separations: Recent advances and future directions.
    Freeman, BD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : D70 - D70