ON SMALL-TIME LOCAL CONTROLLABILITY

被引:2
|
作者
Jafarpour, Saber [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Ctr Control Dynam Syst & Computat, Santa Barbara, CA 93106 USA
关键词
small-time local controllability; real analytic systems; control variations; reachable sets; SUFFICIENT CONDITION; SYSTEMS; THEOREM; PRINCIPLE; FAMILIES;
D O I
10.1137/16M1068797
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study small-time local controllability of real analytic control-affine systems under small perturbations of their vector fields. Consider a real analytic control system X which is small-time locally controllable and whose reachable sets shrink with the polynomial rate of order N with respect to time. We will prove a general theorem which states that any real analytic control-affine system whose vector fields are perturbations of the vector fields of X with polynomials of order higher than N is again small-time locally controllable. In particular, we show that this result connects two long-standing open conjectures about small-time local controllability of systems.
引用
收藏
页码:425 / 446
页数:22
相关论文
共 50 条
  • [1] On the Small-time Local Controllability
    Krastanov, Mikhail Ivanov
    [J]. JOURNAL OF CONVEX ANALYSIS, 2012, 19 (04) : 1073 - 1090
  • [2] On the small-time local controllability
    Krastanov, Mikhail Ivanov
    Nikolova, Margarita Nikolaeva
    [J]. SYSTEMS & CONTROL LETTERS, 2023, 177
  • [3] A necessary condition for small-time local controllability
    Krastanov, Mikhail Ivanov
    Nikolova, Margarita Nikolaeva
    [J]. AUTOMATICA, 2021, 124
  • [4] A SUFFICIENT CONDITION FOR SMALL-TIME LOCAL CONTROLLABILITY
    Krastanov, Mikhail Ivanov
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2009, 48 (04) : 2296 - 2322
  • [5] Small-Time Local Controllability of Switched Nonlinear Systems
    Meng, Qingkai
    Yang, Hao
    Jiang, Bin
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (11) : 5422 - 5428
  • [6] SMALL-TIME LOCAL CONTROLLABILITY FOR A CLASS OF HOMOGENEOUS SYSTEMS
    Aguilar, Cesar O.
    Lewis, Andrew D.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (03) : 1502 - 1517
  • [7] On the small-time local controllability of a KdV system for critical lengths
    Coron, Jean -Michel
    Koenig, Armand
    Nguyen, Hoai-Minh
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (04) : 1193 - 1253
  • [8] AN OBSTRUCTION TO SMALL-TIME LOCAL NULL CONTROLLABILITY FOR A VISCOUS BURGERS' EQUATION
    Marbach, Frederic
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2018, 51 (05): : 1129 - 1177
  • [9] A SUFFICIENT CONDITION FOR SMALL-TIME LOCAL CONTROLLABILITY OF A POLYNOMIAL CONTROL SYSTEM
    Krastanov, Mikhail Ivanov
    Nikolova, Margarita Nikolaeva
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2020, 73 (12): : 1638 - 1649
  • [10] On the constrained small-time controllability of linear systems
    Krastanov, Mikhail I.
    [J]. AUTOMATICA, 2008, 44 (09) : 2370 - 2374