To improve the high temperature polymer electrolyte membrane fuel cells performance by altering the properties of catalyst layer

被引:18
|
作者
Sasiwimonrit, Krerkkiat [1 ]
Chang, Wei-Chin [1 ]
机构
[1] Southern Taiwan Univ Sci & Technol, Dept Mech Engn, 1 Nantai St, Tainan 71005, Taiwan
关键词
HT-PEMFC; Fuel cell; Catalyst layer; Ionomer; GAS-DIFFUSION ELECTRODE; WATER MANAGEMENT; PEMFC; BINDERS; HEAT;
D O I
10.1016/j.ijhydene.2020.03.179
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The structure of electrochemical reaction zone and the catalyst layer (CL) thickness affect the performance of high temperature polymer electrolyte membrane fuel cells. In this study, the physical structures and compositions of CL are investigated by electron microscopy and polarization curve techniques. The Pt concentration of Pt/C decides the thickness of CL when the Pt loading is fixed. A higher weight percentage Pt/C contains a lower amount of carbon powder results in a thin CL and limited space for electrochemical reaction. On the other hand, the lower weight percent Pt/C provides larger space and smaller size of platinum catalyst which engenders the electrochemical reaction in CL more easily. The ionomer binds electrocatalysts Pt/C particles together and offers the ion conducting phase. Two different ionomers, Polytetrafluoroethylene (PTFE) and Polyvinylidenedifluoride (PVDF), were tested. SEM results showed that PTFE forms a better uniform CL structure than PVDF. With 10 wt% Pt/C, PTFE ionomer possesses a higher gas permeability property which induces a higher reactant flow rate in CL, and consequently results in a 42.9% higher cell potential than the PVDF at 0.4 A/cm(2) current density output. A proper combination of 10 wt% Pt/C with PTFE ionomer is able to gain 0.62 A/cm(2) output at 0.3067 V for the HT-PEMFC. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:14491 / 14499
页数:9
相关论文
共 50 条
  • [1] Organic Additives to Improve Catalyst Performance for High-Temperature Polymer Electrolyte Membrane Fuel Cells
    Delikaya, Oeznur
    Zeyat, Mohammad
    Lentz, Dieter
    Roth, Christina
    CHEMELECTROCHEM, 2019, 6 (15) : 3892 - 3900
  • [2] Effect of catalyst layer microstructures on performance and stability for high temperature polymer electrolyte membrane fuel cells
    Zhang, Jujia
    Wang, Haining
    Li, Wen
    Zhang, Jin
    Lu, Di
    Yan, Wenrui
    Xiang, Yan
    Lu, Shanfu
    JOURNAL OF POWER SOURCES, 2021, 505
  • [3] Effect of dispersant on catalyst ink properties and catalyst layer structure for high performance polymer electrolyte membrane fuel cells
    So, Soonyong
    Oh, Keun-Hwan
    JOURNAL OF POWER SOURCES, 2023, 561
  • [4] Effects of cathode catalyst layer fabrication parameters on the performance of high-temperature polymer electrolyte membrane fuel cells
    Lee, Eunae
    Kim, Do-Hyung
    Pak, Chanho
    APPLIED SURFACE SCIENCE, 2020, 510 (510)
  • [5] Optimization on Composition and Structure of Catalyst Layer for High-Temperature Polymer Electrolyte Membrane Fuel Cells
    Tan, Meihui
    Liu, Huiyuan
    Su, Huaneng
    Zhang, Weiqi
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2023, 20 (04)
  • [6] Modulated Ionomer Distribution in the Catalyst Layer of Polymer Electrolyte Membrane Fuel Cells for High Temperature Operation
    Choo, Min-Ju
    Oh, Keun-Hwan
    Kim, Hee-Tak
    Park, Jung-Ki
    CHEMSUSCHEM, 2014, 7 (08) : 2335 - 2341
  • [7] Investigating the Impact of Catalyst Penetration into Gas Diffusion Layer on the Performance of High-Temperature Polymer Electrolyte Membrane Fuel Cells
    Chippar, Purushothama
    Babu, Venkatesh K. P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (02)
  • [8] Membrane depending properties of high temperature polymer electrolyte fuel cells
    Mahr, Ulrich
    Gronwald, Oliver
    Reiche, Annette
    Melzner, Dieter
    DESALINATION, 2006, 200 (1-3) : 648 - 649
  • [9] Catalyst, Membrane, Free Electrolyte Challenges, and Pathways to Resolutions in High Temperature Polymer Electrolyte Membrane Fuel Cells
    Myles, Timothy
    Bonville, Leonard
    Maric, Radenka
    CATALYSTS, 2017, 7 (01)
  • [10] Effect of catalyst layer microstructures on performance and stability for high temperature polymer electrolyte membrane fuel cells (vol 505, 230059, 2021)
    Zhang, Jujia
    Wang, Haining
    Li, Wen
    Zhang, Jin
    Lu, Di
    Yan, Wenrui
    Xiang, Yan
    Lu, Shanfu
    JOURNAL OF POWER SOURCES, 2022, 521