Goodness-of-fit tests for Markovian time series models: Central limit theory and bootstrap approximations

被引:17
|
作者
Neumann, Michael H. [1 ]
Paparoditis, Efstathios [2 ]
机构
[1] Univ Jena, Inst Stockastik, D-07743 Jena, Germany
[2] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词
ARCH processes; autoregressive processes; bootstrap; central limit theorem; goodness-of-fit test; weak dependence;
D O I
10.3150/07-BEJ6055
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
New goodness-of-fit tests for Markovian models in time series analysis are developed which are based on the difference between a fully nonparametric estimate of the one-step transition distribution function of the observed process and that of the model class postulated under the null hypothesis. The model specification under the null allows for Markovian models, the transition mechanisms of which depend on an unknown vector of parameters and an unspecified distribution of i.i.d. innovations. Asymptotic properties of the test statistic are derived and the critical values of the test are found using appropriate bootstrap schemes. General properties of the bootstrap for Markovian processes are derived. A new central limit theorem for triangular arrays of weakly dependent random variables is obtained. For the proof of stochastic equicontinuity of multidimensional empirical processes, we use a simple approach based on an anisotropic tiling of the space. The finite-sample behavior of the proposed test is illustrated by some numerical examples and a real-data application is given.
引用
收藏
页码:14 / 46
页数:33
相关论文
共 50 条