New goodness-of-fit tests for Markovian models in time series analysis are developed which are based on the difference between a fully nonparametric estimate of the one-step transition distribution function of the observed process and that of the model class postulated under the null hypothesis. The model specification under the null allows for Markovian models, the transition mechanisms of which depend on an unknown vector of parameters and an unspecified distribution of i.i.d. innovations. Asymptotic properties of the test statistic are derived and the critical values of the test are found using appropriate bootstrap schemes. General properties of the bootstrap for Markovian processes are derived. A new central limit theorem for triangular arrays of weakly dependent random variables is obtained. For the proof of stochastic equicontinuity of multidimensional empirical processes, we use a simple approach based on an anisotropic tiling of the space. The finite-sample behavior of the proposed test is illustrated by some numerical examples and a real-data application is given.
WU JianHong ZHU LiXing College of Statistics and MathematicsZhejiang Gongshang UniversityHangzhou China Department of MathematicsHong Kong Baptist UniversityHong KongChina
论文数: 0引用数: 0
h-index: 0
WU JianHong ZHU LiXing College of Statistics and MathematicsZhejiang Gongshang UniversityHangzhou China Department of MathematicsHong Kong Baptist UniversityHong KongChina
机构:
Zhejiang Gongshang Univ, Coll Stat & Math, Hangzhou 310018, Zhejiang, Peoples R ChinaZhejiang Gongshang Univ, Coll Stat & Math, Hangzhou 310018, Zhejiang, Peoples R China
Wu JianHong
Zhu LiXing
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R ChinaZhejiang Gongshang Univ, Coll Stat & Math, Hangzhou 310018, Zhejiang, Peoples R China