Non-trapping estimates near normally hyperbolic trapping

被引:13
|
作者
Hintz, Peter [1 ]
Vasy, Andras [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
SETS;
D O I
10.4310/MRL.2014.v21.n6.a5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove semiclassical resolvent estimates for operators with normally hyperbolic trapping which are lossless relative to non-trapping estimates but take place in weaker function spaces. In particular, we obtain non-trapping estimates in standard L-2 spaces for the resolvent sandwiched between operators which localize away from the trapped set Gamma in a rather weak sense, namely whose principal symbols vanish on Gamma.
引用
收藏
页码:1277 / 1304
页数:28
相关论文
共 50 条
  • [1] STRICHARTZ ESTIMATES AND STRAUSS CONJECTURE ON NON-TRAPPING ASYMPTOTICALLY HYPERBOLIC MANIFOLDS
    Sire, Yannick
    Sogge, Christopher D.
    Wang, Chengbo
    Zhang, Junyong
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (11) : 7639 - 7668
  • [2] Reversed Strichartz estimates for wave on non-trapping asymptotically hyperbolic manifolds and applications
    Sire, Yannick
    Sogge, Christopher D.
    Wang, Chengbo
    Zhang, Junyong
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (06) : 1124 - 1132
  • [3] UNIFORM SOBOLEV ESTIMATES FOR NON-TRAPPING METRICS
    Guillarmou, Colin
    Hassell, Andrew
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2014, 13 (03) : 599 - 632
  • [4] On global Strichartz estimates for non-trapping metrics
    Bouclet, Jean-Marc
    Tzvetkov, Nikolay
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (06) : 1661 - 1682
  • [5] The non-trapping degree of scattering
    Knauf, Andreas
    Krapf, Markus
    [J]. NONLINEARITY, 2008, 21 (09) : 2023 - 2041
  • [6] SPECTRAL GAPS FOR NORMALLY HYPERBOLIC TRAPPING
    Dyatlov, Semyon
    [J]. ANNALES DE L INSTITUT FOURIER, 2016, 66 (01) : 55 - 82
  • [7] Decay of correlations for normally hyperbolic trapping
    Stéphane Nonnenmacher
    Maciej Zworski
    [J]. Inventiones mathematicae, 2015, 200 : 345 - 438
  • [8] Decay of correlations for normally hyperbolic trapping
    Nonnenmacher, Stephane
    Zworski, Maciej
    [J]. INVENTIONES MATHEMATICAE, 2015, 200 (02) : 345 - 438
  • [9] Non-trapping magnetic fields and Morrey-Campanato estimates for Schrodinger operators
    Fanelli, Luca
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) : 1 - 14
  • [10] Non-trapping sets and Huygens principle
    Benedetto, D
    Caglioti, E
    Libero, R
    [J]. RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (03): : 517 - 530