Real-time panoptic segmentation with relationship between adjacent pixels and boundary prediction

被引:0
|
作者
Zhang, Xiaoliang [1 ]
Li, Hongliang [1 ]
Wang, Lanxiao [1 ]
Cheng, Haoyang [1 ]
Qiu, Heqian [1 ]
Hu, Wenzhe [1 ]
Meng, Fanman [1 ]
Wu, Qingbo [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
基金
国家重点研发计划;
关键词
Panoptic segmentation; Graph convolution; Fully convolution; Relationship between adjacent pixels; Boundary prediction;
D O I
10.1016/j.neucom.2022.07.078
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Panoptic segmentation has recently received increasing attention since it generates coherent scene segmentation by unifying semantic and instance segmentation. The most popular methods for panoptic segmentation are currently based on an instance segmentation framework with a semantic segmentation branch in parallel. However, these methods are too bloated for real-world applications. In this paper, we propose a simple yet effective fully convolutional network for fast panoptic segmentation. Instead of directly generating the mask for each instance, we leverage a simple graph convolutional layer to con-struct a pixel relationship head to predict the relationship between two adjacent pixels and determine whether they belong to the same instance. Besides, we leverage boundary information to enhance super-vision information and help our method distinguish adjacent objects. Combining predicted category labels for each pixel from the semantic segmentation branch, we can generate a unified panoptic segmen-tation mask in a parameter-free step. We demonstrate our method's effectiveness on MS COCO dataset and Cityscapes dataset, which obtain competitive results.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:290 / 299
页数:10
相关论文
共 50 条
  • [1] Real-time panoptic segmentation with relationship between adjacent pixels and boundary prediction
    Zhang, Xiaoliang
    Li, Hongliang
    Wang, Lanxiao
    Cheng, Haoyang
    Qiu, Heqian
    Hu, Wenzhe
    Meng, Fanman
    Wu, Qingbo
    [J]. Neurocomputing, 2022, 506 : 290 - 299
  • [2] Panoptic SwiftNet: Pyramidal Fusion for Real-Time Panoptic Segmentation
    Saric, Josip
    Orsic, Marin
    Segvic, Sinisa
    [J]. REMOTE SENSING, 2023, 15 (08)
  • [3] Real-Time Panoptic Segmentation with Prototype Masks for Automated Driving
    Petrovai, Andra
    Nedevschi, Sergiu
    [J]. 2020 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2020, : 1400 - 1406
  • [4] Center Focusing Network for Real-Time LiDAR Panoptic Segmentation
    Li, Xiaoyan
    Zhang, Gang
    Wang, Boyue
    Hu, Yongli
    Yin, Baocai
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 13425 - 13434
  • [5] C-YOSO: Contrastive Query on Real-Time Panoptic Segmentation
    Plabplathong, Chananvich
    Rojviboonchai, Kultida
    Vateekul, Peerapon
    [J]. IEEE Access, 2024, 12 : 177355 - 177367
  • [6] You Only Segment Once: Towards Real-Time Panoptic Segmentation
    Hu, Jie
    Huang, Linyan
    Ren, Tianhe
    Zhang, Shengchuan
    Ji, Rongrong
    Cao, Liujuan
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17819 - 17829
  • [7] Real-Time Prediction of Segmentation Quality
    Robinson, Robert
    Oktay, Ozan
    Bai, Wenjia
    Valindria, Vanya V.
    Sanghvi, Mihir M.
    Aung, Nay
    Paiva, Jose M.
    Zemrak, Filip
    Fung, Kenneth
    Lukaschuk, Elena
    Lee, Aaron M.
    Carapella, Valentina
    Kim, Young Jin
    Kainz, Bernhard
    Piechnik, Stefan K.
    Neubauer, Stefan
    Petersen, Steffen E.
    Page, Chris
    Rueckert, Daniel
    Glocker, Ben
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT IV, 2018, 11073 : 578 - 585
  • [8] Panoptic-PHNet: Towards Real-Time and High-Precision LiDAR Panoptic Segmentation via Clustering Pseudo Heatmap
    Li, Jinke
    He, Xiao
    Wen, Yang
    Gao, Yuan
    Cheng, Xiaoqiang
    Zhang, Dan
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 11799 - 11808
  • [9] LiDAR-Based Real-Time Panoptic Segmentation via Spatiotemporal Sequential Data Fusion
    Wang, Weiqi
    You, Xiong
    Yang, Jian
    Su, Mingzhan
    Zhang, Lantian
    Yang, Zhenkai
    Kuang, Yingcai
    [J]. REMOTE SENSING, 2022, 14 (08)
  • [10] GenPa-SLAM: Using a General Panoptic Segmentation for a Real-Time Semantic Landmark SLAM
    Beer, Lukas
    Luettel, Thorsten
    Wuensche, Hans-Joachim
    [J]. 2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 873 - 879