Semiparametric Bayesian inference for accelerated failure time models with errors-in-covariates and doubly censored data

被引:1
|
作者
Shen, Junshan [1 ]
Li, Zhaonan [1 ]
Yu, Hanjun [1 ]
Fang, Xiangzhong [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Accelerated failure time model; Dirichlet process; errors-in-covariates; Gibbs sampling; variable selection; CONFIDENCE-INTERVALS; LINEAR-REGRESSION; SELECTION; DISTRIBUTIONS;
D O I
10.1007/s11424-017-6010-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes a Bayesian semiparametric accelerated failure time model for doubly censored data with errors-in-covariates. The authors model the distributions of the unobserved covariates and the regression errors via the Dirichlet processes. Moreover, the authors extend the Bayesian Lasso approach to our semiparametric model for variable selection. The authors develop the Markov chain Monte Carlo strategies for posterior calculation. Simulation studies are conducted to show the performance of the proposed method. The authors also demonstrate the implementation of the method using analysis of PBC data and ACTG 175 data.
引用
收藏
页码:1189 / 1205
页数:17
相关论文
共 50 条
  • [1] Semiparametric Bayesian inference for accelerated failure time models with errors-in-covariates and doubly censored data
    Junshan Shen
    Zhaonan Li
    Hanjun Yu
    Xiangzhong Fang
    [J]. Journal of Systems Science and Complexity, 2017, 30 : 1189 - 1205
  • [2] Semiparametric Bayesian Inference for Accelerated Failure Time Models with Errors-in-Covariates and Doubly Censored Data
    SHEN Junshan
    LI Zhaonan
    YU Hanjun
    FANG Xiangzhong
    [J]. Journal of Systems Science & Complexity, 2017, 30 (05) : 1189 - 1205
  • [3] Semiparametric Bayesian analysis of censored linear regression with errors-in-covariates
    Sinha, Samiran
    Wang, Suojin
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (03) : 1389 - 1415
  • [4] A Bayesian semiparametric accelerated failure time model for arbitrarily censored data with covariates subject to measurement error
    Lin, Xiaoyan
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (01) : 747 - 756
  • [5] A Class of Semiparametric Transformation Models for Doubly Censored Failure Time Data
    Li, Shuwei
    Hu, Tao
    Wang, Peijie
    Sun, Jianguo
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2018, 45 (03) : 682 - 698
  • [6] BAYESIAN SEMIPARAMETRIC INFERENCE FOR MULTIVARIATE DOUBLY-INTERVAL-CENSORED DATA
    Jara, Alejandro
    Lesaffre, Emmanuel
    De Iorio, Maria
    Quintana, Fernando
    [J]. ANNALS OF APPLIED STATISTICS, 2010, 4 (04): : 2126 - 2149
  • [7] Semiparametric Bayesian accelerated failure time model with interval-censored data
    Yang, Mingan
    Chen, Lihua
    Dong, Guanghui
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (10) : 2049 - 2058
  • [8] Bayesian generalized varying coefficient models for longitudinal proportional data with errors-in-covariates
    Wang, Xiao-Feng
    Hu, Bo
    Wang, Bin
    Fang, Kuangnan
    [J]. JOURNAL OF APPLIED STATISTICS, 2014, 41 (06) : 1342 - 1357
  • [9] Bayesian semiparametric failure time models for multivariate censored data with latent variables
    Ouyang, Ming
    Wang, Xiaoqing
    Wang, Chunjie
    Song, Xinyuan
    [J]. STATISTICS IN MEDICINE, 2018, 37 (28) : 4279 - 4297
  • [10] Bayesian semiparametric inference for the accelerated failure-time model
    Kuo, L
    Mallick, B
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1997, 25 (04): : 457 - 472