An Adaptive Beamforming Approach Applied to Planar Antenna Arrays Using Neural Networks

被引:0
|
作者
Mallioras, Ioannis [1 ,2 ]
Zaharis, Zaharias D. [1 ]
Lazaridis, Pavlos I. [3 ]
Poulkov, Vladimir [4 ]
Kantartzis, Nikolaos V. [1 ]
Yioultsis, Traianos V. [1 ]
机构
[1] Aristotle Univ Thessaloniki, Sch Elect & Comp Engn, Thessaloniki, Greece
[2] Maggioli SpA, Santarcangelo, Italy
[3] Univ Huddersfield, Sch Comp & Engn, Huddersfield, W Yorkshire, England
[4] Tech Univ Sofia, Fac Telecommunicat, Sofia, Bulgaria
基金
欧盟地平线“2020”;
关键词
Adaptive beamforming; deep learning; gated recurrent units; long short-term memory; neural networks; null steering beamforming; planar antenna arrays; recurrent neural networks;
D O I
10.1109/BLACKSEACOM54372.2022.9858302
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Future wireless networks depend on the improvement of current smart antenna operations so that they maintain high accuracy levels at low response times. Utilizing machine learning techniques, it is possible to replace the currently used algorithms with a much faster yet reliable alternative. In this study, we focus on adaptive beamforming applied to a planar antenna array using the null steering beamforming algorithm (NSB). We test different types of deep neural networks (DNNs) as potential alternative beamformers, by comparing their accuracy to that of the NSB algorithm. The application concerns an 8x8 planar antenna array composed of isotropic elements. The DNNs tested here are the traditional feedforward neural networks and recurrent neural networks using either gated recurrent units or long short-term memory units. In addition, we investigate each DNN type to make sure we are utilizing the best version of each neural network architecture.
引用
收藏
页码:293 / 297
页数:5
相关论文
共 50 条
  • [1] COMPARATIVE STUDY OF NEURAL NETWORK TRAINING APPLIED TO ADAPTIVE BEAMFORMING OF ANTENNA ARRAYS
    Zaharis, Z. D.
    Gotsis, K. A.
    Sahalos, J. N.
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2012, 126 : 269 - 283
  • [2] FAULT DIAGNOSIS OF PLANAR ANTENNA ARRAYS USING NEURAL NETWORKS
    Vakula, D.
    Sarma, N. V. S. N.
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2009, 6 : 35 - 46
  • [3] USING NEURAL NETWORKS FOR FAULT DETECTION IN PLANAR ANTENNA ARRAYS
    Vakula, D.
    Sarma, N. V. S. N.
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2010, 14 : 21 - 30
  • [4] A NOVEL ADAPTIVE BEAMFORMING TECHNIQUE APPLIED ON LINEAR ANTENNA ARRAYS USING ADAPTIVE MUTATED BOOLEAN PSO
    Zaharis, Z. D.
    Yioultsis, T. V.
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2011, 117 : 165 - 179
  • [5] Planar Antenna Arrays Beamforming Using Various Optimization Algorithms
    Ghattas, Nancy
    Ghuniem, Atef M. M.
    Abdelsalam, Abdelazeem A. A.
    Magdy, Ahmed
    [J]. IEEE ACCESS, 2023, 11 : 68486 - 68500
  • [6] Adaptive Beamforming for Random Planar Arrays
    Ciaurriz, M.
    Tawk, Y.
    Christodoulou, C. G.
    Costantine, J.
    [J]. 2014 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2014, : 1728 - 1729
  • [7] Beamforming applied to an adaptive planar array
    Guerreiro, AMG
    Neto, ADD
    Lisboa, FA
    [J]. 1998 IEEE RADIO AND WIRELESS CONFERENCE PROCEEDINGS - RAWCON 98, 1998, : 209 - 212
  • [8] Direction of Arrival Estimation Applied to Antenna Arrays using Convolutional Neural Networks
    Kokkinis, Giorgos
    Zaharis, Zaharias D.
    Lazaridis, Pavlos, I
    Kantartzis, Nikolaos, V
    [J]. 2022 3RD URSI ATLANTIC AND ASIA PACIFIC RADIO SCIENCE MEETING (AT-AP-RASC), 2022,
  • [9] Smart Underground Antenna Arrays: A Soil Moisture Adaptive Beamforming Approach
    Salam, Abdul
    Vuran, Mehmet C.
    [J]. IEEE INFOCOM 2017 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2017,
  • [10] Planar Crossover Using Microstrip Patch Antenna for Beamforming Networks
    Mehta, Mirav
    Naveen, K. A.
    Rajan, Vishnu
    Pillai, Rahul R.
    Menon, Sreedevi K.
    [J]. ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY COMPUTATIONS IN ENGINEERING SYSTEMS, ICAIECES 2015, 2016, 394 : 411 - 415