The control of a class of uncertain fractional-order chaotic systems via reduced-order method

被引:6
|
作者
Zeng, Yanhui [1 ]
Luo, Runzi [1 ]
Su, Haipeng [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Peoples R China
来源
OPTIK | 2016年 / 127卷 / 24期
基金
中国国家自然科学基金;
关键词
Fractional-order chaotic system; Chaos control; Reduced-order method; PROJECTIVE SYNCHRONIZATION; ROSSLER SYSTEM; DIFFERENTIAL-EQUATIONS; LYAPUNOV FUNCTIONS; OBSERVER;
D O I
10.1016/j.ijleo.2016.09.092
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we mainly discuss the control of a class of 3,4-dimensional fractional-order chaotic systems with unknown parameter, model uncertainties and external disturbances. Based on the fractional-order extension of Lyapunov stability theorem some novel criteria for the control of a class of 3,4-dimensional fractional-order chaotic systems are proposed via reduced-order method. Moreover, by using our results the control and synchronization of the fractional-order Rossler system is also investigated. Numerical simulations are shown to further verify the feasibility of the presented control schemes. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:11948 / 11959
页数:12
相关论文
共 50 条
  • [1] Reduced-Order State Estimation for a Class of Nonlinear Fractional-Order Systems
    Dinh Cong Huong
    [J]. Circuits, Systems, and Signal Processing, 2023, 42 : 2740 - 2754
  • [2] Reduced-Order State Estimation for a Class of Nonlinear Fractional-Order Systems
    Huong, Dinh Cong
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (05) : 2740 - 2754
  • [3] Synchronization of uncertain fractional-order chaotic systems via the fractional-order sliding mode controller
    Yan, Xiaomei
    Shang, Ting
    Zhao, Xiaoguo
    Ji, Ruirui
    [J]. PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 1444 - 1449
  • [4] Control of a class of fractional-order chaotic systems via sliding mode
    Di-yi Chen
    Yu-xiao Liu
    Xiao-yi Ma
    Run-fan Zhang
    [J]. Nonlinear Dynamics, 2012, 67 : 893 - 901
  • [5] Control of a class of fractional-order chaotic systems via sliding mode
    Chen, Di-yi
    Liu, Yu-xiao
    Ma, Xiao-yi
    Zhang, Run-fan
    [J]. NONLINEAR DYNAMICS, 2012, 67 (01) : 893 - 901
  • [6] Reduced-Order Observer-Based Adaptive Backstepping Control for Fractional-Order Uncertain Nonlinear Systems
    Ma, Zhiyao
    Ma, Hongjun
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (12) : 3287 - 3301
  • [7] A class of uncertain fractional-order systems control with perturbation
    Huang, Jiaoru
    Peng, Yuhao
    Chen, Chaobo
    [J]. 2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 1362 - 1367
  • [8] Reduced-Order Modeling of Commensurate Fractional-Order Systems
    Saxena, Sahaj
    Hote, Yogesh V.
    Arya, Pushkar Prakash
    [J]. 2016 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2016,
  • [9] Fixed-time control of a class of fractional-order chaotic systems via backstepping method
    Luo, Runzi
    Liu, Shuai
    Song, Zijun
    Zhang, Fang
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 167
  • [10] Reduced-order fractional integral observer for synchronisation and anti-synchronisation of fractional-order chaotic systems
    Melendez-Vazquez, Fidel
    Martinez-Guerra, Rafael
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (12): : 1755 - 1762