A simple and useful regression model for fitting count data

被引:4
|
作者
Bourguignon, Marcelo [1 ]
de Medeiros, Rodrigo M. R. [1 ]
机构
[1] Univ Fed Rio Grande do Norte, Dept Estat, BR-59078970 Natal, RN, Brazil
关键词
BerG distribution; Count data; Regression models; Overdispersion; Underdispersion;
D O I
10.1007/s11749-022-00801-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a novel regression model for count data where the response variable is BerG-distributed using a new parameterization of this distribution, which is indexed by mean and dispersion parameters. An attractive feature of this model lies in its potential to fit count data when overdispersion, equidispersion, underdispersion, or zero inflation (or deflation) is indicated. The advantage of our new parameterization and approach is the straightforward interpretation of the regression coefficients in terms of the mean and dispersion as in generalized linear models. The maximum likelihood method is used to estimate the model parameters. Also, we conduct hypothesis tests for the dispersion parameter and consider residual analysis. Simulation studies are conducted to empirically evidence the properties of the estimators, the test statistics, and the residuals in finite-sized samples. The proposed model is applied to two real datasets on wildlife habitat and road traffic accidents, which illustrates its capabilities in accommodating both over- and underdispersed count data. This paper contains Supplementary Material.
引用
收藏
页码:790 / 827
页数:38
相关论文
共 50 条
  • [1] A simple and useful regression model for fitting count data
    Marcelo Bourguignon
    Rodrigo M. R. de Medeiros
    [J]. TEST, 2022, 31 : 790 - 827
  • [2] A simple and useful regression model for underdispersed count data based on Bernoulli–Poisson convolution
    Marcelo Bourguignon
    Diego I. Gallardo
    Rodrigo M. R. Medeiros
    [J]. Statistical Papers, 2022, 63 : 821 - 848
  • [3] A simple bivariate count data regression model
    Gurmu, Shiferaw
    Elder, John
    [J]. ECONOMICS BULLETIN, 2007, 3
  • [4] A simple and useful regression model for underdispersed count data based on Bernoulli-Poisson convolution
    Bourguignon, Marcelo
    Gallardo, Diego, I
    Medeiros, Rodrigo M. R.
    [J]. STATISTICAL PAPERS, 2022, 63 (03) : 821 - 848
  • [5] A Simple and Adaptive Dispersion Regression Model for Count Data
    Klakattawi, Hadeel S.
    Vinciotti, Veronica
    Yu, Keming
    [J]. ENTROPY, 2018, 20 (02):
  • [6] FITTING A MIXTURE MODEL TO COUNT DATA
    RICHARDSON, SC
    [J]. BIOMETRICS, 1990, 46 (01) : 273 - 273
  • [7] A FLEXIBLE REGRESSION MODEL FOR COUNT DATA
    Sellers, Kimberly F.
    Shmueli, Galit
    [J]. ANNALS OF APPLIED STATISTICS, 2010, 4 (02): : 943 - 961
  • [8] Simple and useful statistical control charts for monitoring count data
    Bourguignon, Marcelo
    Medeiros, Rodrigo M. R.
    Fernandes, Fidel Henrique
    Ho, Linda Lee
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2021, 37 (02) : 541 - 566
  • [9] A multivariate Poisson regression model for count data
    Munoz-Pichardo, J. M.
    Pino-Mejias, R.
    Garcia-Heras, J.
    Ruiz-Munoz, F.
    Luz Gonzalez-Regalado, M.
    [J]. JOURNAL OF APPLIED STATISTICS, 2021, 48 (13-15) : 2525 - 2541
  • [10] A generalized Waring regression model for count data
    Rodriguez-Avi, J.
    Conde-Sanchez, A.
    Saez-Castillo, A. J.
    Olmo-Jimenez, M. J.
    Martinez-Rodriguez, A. M.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (10) : 3717 - 3725