Comparison of a Quantum Random Number Generator with Pseudorandom Number Generators for Their Use in Molecular Monte Carlo Simulations

被引:8
|
作者
Ghersi, Dario [1 ]
Parakh, Abhishek [1 ]
Mezei, Mihaly [2 ]
机构
[1] Univ Nebraska, Sch Interdisciplinary Informat, Omaha, NE 68182 USA
[2] Icahn Sch Med Mt Sinai, Dept Pharmacol Sci, New York, NY 10029 USA
基金
美国国家科学基金会;
关键词
quantum random number generators; pseudorandom number generators; Monte Carlo simulations; FORCE-FIELD;
D O I
10.1002/jcc.25065
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Four pseudorandom number generators were compared with a physical, quantum-based random number generator using the NIST suite of statistical tests, which only the quantum-based random number generator could successfully pass. We then measured the effect of the five random number generators on various calculated properties in different Markov-chain Monte Carlo simulations. Two types of systems were tested: conformational sampling of a small molecule in aqueous solution and liquid methanol under constant temperature and pressure. The results show that poor quality pseudorandom number generators produce results that deviate significantly from those obtained with the quantum-based random number generator, particularly in the case of the small molecule in aqueous solution setup. In contrast, the widely used Mersenne Twister pseudorandom generator and a 64-bit Linear Congruential Generator with a scrambler produce results that are statistically indistinguishable from those obtained with the quantum-based random number generator. (C) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:2713 / 2720
页数:8
相关论文
共 50 条
  • [1] Random Number Generators Tested on Quantum Monte Carlo Simulations
    Hongo, Kenta
    Maezono, Ryo
    Miura, Kenichi
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (11) : 2186 - 2194
  • [2] Using random number generators in Monte Carlo simulations
    Resende, FJ
    Costa, BV
    PHYSICAL REVIEW E, 1998, 58 (04): : 5183 - 5184
  • [3] Parallel pseudorandom number generator for large-scale Monte Carlo simulations
    Marchenko, Mikhail
    PARALLEL COMPUTING TECHNOLOGIES, PROCEEDINGS, 2007, 4671 : 276 - 282
  • [4] RANDOM NUMBER GENERATORS IN MONTE CARLO SIMULATION
    Mcewan, P.
    Foos, V
    Chraibi, M.
    Lloyd, A.
    Palmer, J. L.
    Lamotte, M.
    Grant, D.
    VALUE IN HEALTH, 2012, 15 (07) : A469 - A469
  • [5] RANDOM AND PSEUDORANDOM NUMBER GENERATORS
    DAVIO, M
    ELECTRONIC ENGINEERING, 1967, 39 (475): : 558 - &
  • [6] Comparison of Pseudorandom Number Generators and Their Application for Uncertainty Estimation Using Monte Carlo Simulation
    Karan Malik
    Jiji Pulikkotil
    Anjali Sharma
    MAPAN, 2021, 36 : 481 - 496
  • [7] Comparison of Pseudorandom Number Generators and Their Application for Uncertainty Estimation Using Monte Carlo Simulation
    Malik, K.
    Pulikkotil, J.
    Sharma, A.
    MAPAN-JOURNAL OF METROLOGY SOCIETY OF INDIA, 2021, 36 (03): : 481 - 496
  • [8] Monte Carlo simulations of biophysical systems: The importance of quality of random number generators
    Kaminski, George
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [9] Errors in Monte Carlo simulations using shift register random number generators
    Schmid, F
    Wilding, NB
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C-PHYSICS AND COMPUTERS, 1995, 6 (06): : 781 - 787
  • [10] Improving Random Number Generators in the Monte Carlo simulations via twisting and combining
    Deng, Lih-Yuan
    Guo, Rui
    Lin, Dennis K. J.
    Bai, Fengshan
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 178 (06) : 401 - 408