Multi-step nonlinear conjugate gradient methods for unconstrained minimization

被引:38
|
作者
Ford, John A. [2 ]
Narushima, Yasushi [1 ]
Yabe, Hiroshi [1 ]
机构
[1] Tokyo Univ Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, Japan
[2] Univ Essex, Dept Comp Sci, Colchester CO4 3SQ, Essex, England
关键词
unconstrained optimization; conjugate gradient method; line search; global convergence; multi-step secant condition;
D O I
10.1007/s10589-007-9087-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Conjugate gradient methods are appealing for large scale nonlinear optimization problems, because they avoid the storage of matrices. Recently, seeking fast convergence of these methods, Dai and Liao (Appl. Math. Optim. 43:87-101, 2001) proposed a conjugate gradient method based on the secant condition of quasi-Newton methods, and later Yabe and Takano (Comput. Optim. Appl. 28:203-225, 2004) proposed another conjugate gradient method based on the modified secant condition. In this paper, we make use of a multi-step secant condition given by Ford and Moghrabi (Optim. Methods Softw. 2:357-370, 1993; J. Comput. Appl. Math. 50:305-323, 1994) and propose two new conjugate gradient methods based on this condition. The methods are shown to be globally convergent under certain assumptions. Numerical results are reported.
引用
收藏
页码:191 / 216
页数:26
相关论文
共 50 条
  • [1] Multi-step nonlinear conjugate gradient methods for unconstrained minimization
    John A. Ford
    Yasushi Narushima
    Hiroshi Yabe
    [J]. Computational Optimization and Applications, 2008, 40 : 191 - 216
  • [2] Multi-Step Skipping Methods for Unconstrained Optimization
    Ford, John A.
    Aamir, Nudrat
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [3] A New Scalar of Conjugate Gradient Methods for Solving Unconstrained Minimization
    Mohammad, T. Saja O.
    Chilmeran, Hamsa Th. Saeed
    Al-Kawaz, Rana Z.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (01): : 233 - 242
  • [4] On conjugate symplecticity of multi-step methods
    Tang, YF
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2000, 18 (04) : 431 - 438
  • [5] ON CONJUGATE SYMPLECTICITY OF MULTI-STEP METHODS
    Yi-fa Tang (LSEC
    [J]. Journal of Computational Mathematics, 2000, (04) : 431 - 438
  • [7] A Family of Multi-Step Subgradient Minimization Methods
    Tovbis, Elena
    Krutikov, Vladimir
    Stanimirovic, Predrag
    Meshechkin, Vladimir
    Popov, Aleksey
    Kazakovtsev, Lev
    [J]. MATHEMATICS, 2023, 11 (10)
  • [8] A NEW COEFFICIENT OF CONJUGATE GRADIENT METHODS FOR NONLINEAR UNCONSTRAINED OPTIMIZATION
    Mohamed, Nur Syarafina
    Mamat, Mustafa
    Mohamad, Fatma Susilawati
    Rivaie, Mohd
    [J]. JURNAL TEKNOLOGI, 2016, 78 (6-4): : 131 - 136
  • [9] A New Subspace Minimization Conjugate Gradient Method for Unconstrained Minimization
    Zexian Liu
    Yan Ni
    Hongwei Liu
    Wumei Sun
    [J]. Journal of Optimization Theory and Applications, 2024, 200 : 820 - 851
  • [10] A New Subspace Minimization Conjugate Gradient Method for Unconstrained Minimization
    Liu, Zexian
    Ni, Yan
    Liu, Hongwei
    Sun, Wumei
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 200 (02) : 820 - 851