Comparison of Heidelberg Composite Images with Optos Ultra-Wide Field Images by Overlay using Artificial Intelligence vs Mathematical Warping

被引:0
|
作者
Kalaw, Fritz Gerald Paguiligan [1 ]
Cavichini, Melina [1 ]
Zhang, Junkang [2 ]
Bartsch, Dirk-Uwe G. [1 ]
Alex, Varsha [1 ]
Galang, Carlo B. [1 ]
Heinke, Anna [1 ]
Warter, Alexandra [1 ]
Nguyen, Truong Q. [2 ]
An, Cheolhong [2 ]
Freeman, William R. [1 ]
机构
[1] Joan & Irwin Jacobs Retina Ctr, Ophthalmol, La Jolla, CA USA
[2] Univ Calif San Diego, Elect & Comp Engn, La Jolla, CA 92093 USA
关键词
D O I
暂无
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
F0067
引用
收藏
页数:3
相关论文
共 42 条
  • [1] Artificial intelligence in ophthalmopathy and ultra-wide field image: A survey
    Yang, Jie
    Fong, Simon
    Wang, Han
    Hu, Quanyi
    Lin, Chen
    Huang, Shigao
    Shi, Jian
    Lan, Kun
    Tang, Rui
    Wu, Yaoyang
    Zhao, Qi
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 182
  • [2] Morphological characteristics of retinal vessels in eyes with high myopia: Ultra-wide field images analyzed by artificial intelligence using a transfer learning system
    Mao, Jianbo
    Deng, Xinyi
    Ye, Yu
    Liu, Hui
    Fang, Yuyan
    Zhang, Zhengxi
    Chen, Nuo
    Sun, Mingzhai
    Shen, Lijun
    FRONTIERS IN MEDICINE, 2023, 9
  • [3] Retinal vascular morphological characteristics in diabetic retinopathy: an artificial intelligence study using a transfer learning system to analyze ultra-wide field images
    Deng, Xin-Yi
    Liu, Hui
    Zhang, Zheng-Xi
    Li, Han-Xiao
    Wang, Jun
    Chen, Yi-Qi
    Mao, Jian-Bo
    Sun, Ming-Zhai
    Shen, Li -Jun
    INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2024, 17 (06) : 1001 - 1006
  • [4] Automatic detection of diabetic retinopathy features in Ultra-Wide Field retinal images
    Levenkova, Anastasia
    Sowmya, Arcot
    Kalloniatis, Michael
    Ly, Angelica
    Ho, Arthur
    MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134
  • [5] Lesion detection in ultra-wide field retinal images for diabetic retinopathy diagnosis
    Levenkova, Anastasia
    Sowmya, Arcot
    Kalloniatis, Michael
    Ly, Angelica
    Ho, Arthur
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [6] An analysis of vortex veins using a 3 dimensional eye model based upon ultra-wide field images
    Funatsu, Ryoh
    Sonoda, Shozo
    Terasaki, Hiroto
    Kakiuchi, Naoko
    Shiihara, Hideki
    Hirokawa, Mariko
    Tanabe, Yasushi
    Ishida, Makoto
    Sakamoto, Taiji
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [7] Image Quality Assessment of Ultra-Wide Field Fluorescein Angiogram (UWF-FA) Images
    Corkery, Ellie
    Domalpally, Amitha
    Blodi, Barbara A.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [8] Deep-Learning-Based Hemoglobin Concentration Prediction and Anemia Screening Using Ultra-Wide Field Fundus Images
    Zhao, Xinyu
    Meng, Lihui
    Su, Hao
    Lv, Bin
    Lv, Chuanfeng
    Xie, Guotong
    Chen, Youxin
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10
  • [9] Comparison of ultra wide-field fluorescein angiography using the Optos® P200Tx and Heidelberg Spectralis® the non-contact wide-angle lens
    Parlitsis, George
    Witmer, Matthew
    Patel, Sarju
    Kiss, Szilard
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (15)
  • [10] Development and validation of a deep learning model to predict axial length from ultra-wide field images
    Wang, Yunzhe
    Wei, Ruoyan
    Yang, Danjuan
    Song, Kaimin
    Shen, Yang
    Niu, Lingling
    Li, Meiyan
    Zhou, Xingtao
    EYE, 2024, 38 (07) : 1296 - 1300