On the transcendence of real numbers with a regular expansion

被引:9
|
作者
Adamczewski, B [1 ]
Cassaigne, J [1 ]
机构
[1] CNRS, UPR 9016, Math Inst, F-13288 Marseille 09, France
关键词
transcendence; coding of rotation; three-interval exchange;
D O I
10.1016/S0022-314X(03)00054-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply the Ferenczi-Mauduit combinatorial condition obtained via a reformulation of Ridout's theorem to prove that a real number whose b-ary expansion is the coding of an irrational rotation on the circle with respect to a partition in two intervals is transcendental. We also prove the transcendence of real numbers whose b-ary expansion arises from a non-periodic three-interval exchange transformation. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:27 / 37
页数:11
相关论文
共 50 条