CT angiographic radiomics signature for risk stratification in anterior large vessel occlusion stroke

被引:14
|
作者
Avery, Emily W. [1 ]
Behland, Jonas [1 ,2 ]
Mak, Adrian [1 ,2 ]
Haider, Stefan P. [1 ,3 ]
Zeevi, Tal [1 ]
Sanelli, Pina C. [4 ]
Filippi, Christopher G. [5 ]
Malhotra, Ajay [1 ]
Matouk, Charles C. [6 ]
Griessenauer, Christoph J. [7 ,8 ,9 ]
Zand, Ramin [10 ]
Hendrix, Philipp [7 ,11 ]
Abedi, Vida [12 ,13 ]
Falcone, Guido J. [14 ]
Petersen, Nils [14 ]
Sansing, Lauren H. [15 ]
Sheth, Kevin N. [14 ]
Payabvash, Seyedmehdi [1 ]
机构
[1] Yale Sch Med, Dept Radiol & Biomed Imaging, Sect Neuroradiol, New Haven, CT USA
[2] Charite Univ Med Berlin, CLAIM Charite Lab Artificial Intelligence Med, Berlin, Germany
[3] Ludwig Maximilians Univ Munchen, Dept Otorhinolaryngol, Univ Hosp, Munich, Germany
[4] Northwell Hlth, Sect Neuroradiol, Dept Radiol, Manhasset, NY USA
[5] Tufts Sch Med, Dept Radiol, Sect Neuroradiol, Boston, MA USA
[6] Yale Univ, Dept Neurosurg, Div Neurovasc Surg, Sch Med, New Haven, CT USA
[7] Geisinger Med Ctr, Dept Neurosurg, Danville, PA 17822 USA
[8] Paracelsus Med Univ, Res Inst Neurointervent, Salzburg, Austria
[9] Paracelsus Med Univ, Dept Neurosurg, Salzburg, Austria
[10] Geisinger, Dept Neurol, Danville, PA USA
[11] Saarland Univ, Dept Neurosurg, Med Ctr, Homburg, Germany
[12] Geisinger, Dept Mol & Funct Genom, Danville, PA USA
[13] Virginia Tech, Biocomplex Inst, Blacksburg, VA USA
[14] Yale Univ, Dept Neurol, Div Neurocrit Care & Emergency Neurol, Sch Med, New Haven, CT USA
[15] Yale Univ, Dept Neurol, Div Stroke & Vasc Neurol, Sch Med, New Haven, CT USA
关键词
Radiomics; Stroke; Large vessel occlusion; CTA; Quantitative imaging; Mechanical thrombectomy; SOURCE IMAGES; THROMBECTOMY; INFARCT;
D O I
10.1016/j.nicl.2022.103034
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Background and Purpose: As "time is brain" in acute stroke triage, the need for automated prognostication tools continues to increase, particularly in rapidly expanding tele-stroke settings. We aimed to create an automated prognostication tool for anterior circulation large vessel occlusion (LVO) stroke based on admission CTA radiomics.Methods: We automatically extracted 1116 radiomics features from the anterior circulation territory on admission CTAs of 829 acute LVO stroke patients who underwent mechanical thrombectomy in two academic centers. We trained, optimized, validated, and compared different machine-learning models to predict favorable outcome (modified Rankin Scale <= 2) at discharge and 3-month follow-up using four different input sets: "Radiomics", "Radiomics + Treatment" (radiomics, post-thrombectomy reperfusion grade, and intravenous thrombolysis), "Clinical + Treatment" (baseline clinical variables and treatment), and "Combined" (radiomics, treatment, and baseline clinical variables).Results: For discharge outcome prediction, models were optimized/trained on n = 494 and tested on an independent cohort of n = 100 patients from Yale. Receiver operating characteristic analysis of the independent cohort showed no significant difference between best-performing Combined input models (area under the curve, AUC = 0.77) versus Radiomics + Treatment (AUC = 0.78, p = 0.78), Radiomics (AUC = 0.78, p = 0.55), or Clinical + Treatment (AUC = 0.77, p = 0.87) models. For 3-month outcome prediction, models were optimized/ trained on n = 373 and tested on an independent cohort from Yale (n = 72), and an external cohort from Geisinger Medical Center (n = 232). In the independent cohort, there was no significant difference between Combined input models (AUC = 0.76) versus Radiomics + Treatment (AUC = 0.72, p = 0.39), Radiomics (AUC = 0.72, p = 0.39), or Clinical + Treatment (AUC = 76, p = 0.90) models; however, in the external cohort, the Combined model (AUC = 0.74) outperformed Radiomics + Treatment (AUC = 0.66, p < 0.001) and Radiomics (AUC = 0.68, p = 0.005) models for 3-month prediction.Conclusion: Machine-learning signatures of admission CTA radiomics can provide prognostic information in acute LVO stroke candidates for mechanical thrombectomy. Such objective and time-sensitive risk stratification can guide treatment decisions and facilitate tele-stroke assessment of patients. Particularly in the absence of reliable clinical information at the time of admission, models solely using radiomics features can provide a useful prognostication tool.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Ct Angiographic Radiomics Signature Predicts Functional Outcome Following Endovascular Thrombectomy in Large Vessel Occlusion Stroke
    Avery, Emily W.
    Behland, Jonas
    Haider, Stefan P.
    Zeevi, Tal
    Nguyen, Cindy Khanh
    Peshwe, Krithika
    Petersen, Nils H.
    Falcone, Guido J.
    Sansing, Lauren H.
    Malhotra, Ajay
    Matouk, Charles C.
    Sheth, Kevin N.
    Payabvash, Seyedmehdi
    STROKE, 2021, 52
  • [2] Dataset on acute stroke risk stratification from CT angiographic radiomics
    Avery, Emily W.
    Behland, Jonas
    Mak, Adrian
    Haider, Stefan P.
    Zeevi, Tal
    Sanelli, Pina C.
    Filippi, Christopher G.
    Malhotra, Ajay
    Matouk, CharlesC.
    Griessenauer, Christoph J.
    Zand, Ramin
    Hendrix, Philipp
    Abedi, Vida
    Guido, J. Falcone N.
    Petersen, Nils
    Sansing, Lauren H.
    Sheth, Kevin N.
    Payabvash, Seyedmehdi
    DATA IN BRIEF, 2022, 44
  • [3] Risk Factors for Acute Ischemic Stroke Caused by Anterior Large Vessel Occlusion
    Hendrix, Philipp
    Sofoluke, Nelson
    Adams, Matthew D.
    Kunaprayoon, Saran
    Zand, Ramin
    Kolinovsky, Amy N.
    Person, Thomas N.
    Gupta, Mudit
    Goren, Oded
    Schirmer, Clemens M.
    Rost, Natalia S.
    Faber, James E.
    Griessenauer, Christoph J.
    STROKE, 2019, 50 (05) : 1074 - 1080
  • [4] Risk factors for acute ischemic stroke caused by anterior large vessel occlusion
    Adams, Matthew D.
    Hendrix, Philipp
    Sofoluke, Nelson
    Kunaprayoon, Saran
    Zand, Ramin
    Kolinovsky, Amy N.
    Person, Thomas N.
    Gupta, Mudit
    Goren, Oded
    Schirmer, Clemens M.
    Rost, Natalia
    Faber, James E.
    Griessenauer, Christoph J.
    NEUROLOGY, 2019, 92 (15)
  • [5] Radiomics Signature of DWI-FLAIR Mismatch Correlates With Clinical Phenotype of Patients With Large Vessel Occlusion Stroke
    Regenhardt, Robert W.
    Bretzner, Martin
    Bonkhoff, Anna K.
    Zanon Zotin, Maria Clara
    Etherton, Mark R.
    Das, Alvin S.
    Alotaibi, Naif M.
    Vranic, Justin E.
    Kuchcinski, Gregory
    Stapleton, Christopher J.
    Patel, Aman B.
    Leslie-Mazwi, Thabele M.
    Rost, Natalia S.
    STROKE, 2021, 52
  • [6] Direct angiographic intervention for acute ischemic stroke with large vessel occlusion
    Li, Weizhe
    Burgin, W. Scott
    Abadal, Kanita Beba
    Mokin, Maxim
    Ren, Zeguang
    NEUROLOGICAL RESEARCH, 2021, 43 (11) : 926 - 931
  • [7] Automated CT angiography collateral scoring in anterior large vessel occlusion stroke: A multireader study
    Jabal, Mohamed Sobhi
    Kallmes, David F. F.
    Harston, George
    Campeau, Norbert
    Schwartz, Kara
    Messina, Steven
    Carr, Carrie
    Benson, John
    Little, Jason
    Nagelschneider, Alex
    Madhavan, Ajay
    Nasr, Deena
    Braksick, Sherry
    Klaas, James
    Scharf, Eugene
    Bilgin, Cem
    Brinjikji, Waleed
    INTERVENTIONAL NEURORADIOLOGY, 2025, 31 (01) : 95 - 100
  • [8] Angiographic Reconstructions From Whole-Brain Perfusion CT for the Detection of Large Vessel Occlusion in Acute Stroke
    Froelich, Andreas M. J.
    Psychogios, Marios N.
    Klotz, Ernst
    Schramm, Ramona
    Knauth, Michael
    Schramm, Peter
    STROKE, 2012, 43 (01) : 97 - 102
  • [9] A canine thromboembolic model of anterior circulation large vessel occlusion stroke
    Zakeri, Amanda S.
    Wheeler, Debra G.
    Huttinger, Allyson
    Carfora, Arianna
    Kini, Aarushi
    Stork, Taggart
    Yacoub, Simon
    Anderson, Cole
    Joseph, Matthew
    Shujaat, Mohammed T.
    Nimjee, Shahid M.
    HELIYON, 2023, 9 (04)
  • [10] Radiomics-Based Prediction of Collateral Status from CT Angiography of Patients Following a Large Vessel Occlusion Stroke
    Avery, Emily W.
    Abou-Karam, Anthony
    Abi-Fadel, Sandra
    Behland, Jonas
    Mak, Adrian
    Haider, Stefan P.
    Zeevi, Tal
    Sanelli, Pina C.
    Filippi, Christopher G.
    Malhotra, Ajay
    Matouk, Charles C.
    Falcone, Guido J.
    Petersen, Nils
    Sansing, Lauren H.
    Sheth, Kevin N.
    Payabvash, Seyedmehdi
    DIAGNOSTICS, 2024, 14 (05)