CSatDTA: Prediction of Drug-Target Binding Affinity Using Convolution Model with Self-Attention

被引:14
|
作者
Ghimire, Ashutosh [1 ]
Tayara, Hilal [2 ]
Xuan, Zhenyu [3 ]
Chong, Kil To [1 ,4 ]
机构
[1] Jeonbuk Natl Univ, Dept Elect & Informat Engn, Jeonju 54896, South Korea
[2] Jeonbuk Natl Univ, Sch Int Engn & Sci, Jeonju 54896, South Korea
[3] Univ Texas Dallas, Dept Biol Sci, Richardson, TX 75080 USA
[4] Jeonbuk Natl Univ, Adv Elect & Informat Res Ctr, Jeonju 54896, South Korea
基金
新加坡国家研究基金会;
关键词
drug-target interaction; binding affinity; attention; convolution neural network; deep learning; artificial intelligence; pharmacometrics; drug discovery and development; proteins; ligands; N4-METHYLCYTOSINE SITES; INHIBITORS; NETWORKS; PROTEIN; TOOL;
D O I
10.3390/ijms23158453
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Drug discovery, which aids to identify potential novel treatments, entails a broad range of fields of science, including chemistry, pharmacology, and biology. In the early stages of drug development, predicting drug-target affinity is crucial. The proposed model, the prediction of drug-target affinity using a convolution model with self-attention (CSatDTA), applies convolution-based self-attention mechanisms to the molecular drug and target sequences to predict drug-target affinity (DTA) effectively, unlike previous convolution methods, which exhibit significant limitations related to this aspect. The convolutional neural network (CNN) only works on a particular region of information, excluding comprehensive details. Self-attention, on the other hand, is a relatively recent technique for capturing long-range interactions that has been used primarily in sequence modeling tasks. The results of comparative experiments show that CSatDTA surpasses previous sequence-based or other approaches and has outstanding retention abilities.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] AttentionDTA: prediction of drug-target binding affinity using attention model
    Zhao, Qichang
    Xiao, Fen
    Yang, Mengyun
    Li, Yaohang
    Wang, Jianxin
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 64 - 69
  • [2] SAG-DTA: Prediction of Drug-Target Affinity Using Self-Attention Graph Network
    Zhang, Shugang
    Jiang, Mingjian
    Wang, Shuang
    Wang, Xiaofeng
    Wei, Zhiqiang
    Li, Zhen
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (16)
  • [3] MultiscaleDTA: A multiscale-based method with a self-attention mechanism for drug-target binding affinity prediction
    Chen, Haoyang
    Li, Dahe
    Liao, Jiaqi
    Wei, Lesong
    Wei, Leyi
    [J]. METHODS, 2022, 207 : 103 - 109
  • [4] DeepMHADTA: Prediction of Drug-Target Binding Affinity Using Multi-Head Self-Attention and Convolutional Neural Network
    Deng, Lei
    Zeng, Yunyun
    Liu, Hui
    Liu, Zixuan
    Liu, Xuejun
    [J]. CURRENT ISSUES IN MOLECULAR BIOLOGY, 2022, 44 (05) : 2287 - 2299
  • [5] Prediction of Drug-Target Affinity Using Attention Neural Network
    Tang, Xin
    Lei, Xiujuan
    Zhang, Yuchen
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (10)
  • [6] Deep drug-target binding affinity prediction with multiple attention blocks
    Zeng, Yuni
    Chen, Xiangru
    Luo, Yujie
    Li, Xuedong
    Peng, Dezhong
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [7] Drug-Target Interaction Prediction Using Multi-Head Self-Attention and Graph Attention Network
    Cheng, Zhongjian
    Yan, Cheng
    Wu, Fang-Xiang
    Wang, Jianxin
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (04) : 2208 - 2218
  • [8] GSAML-DTA: An interpretable drug-target binding affinity prediction model based on graph neural networks with self-attention mechanism and mutual information
    Liao, Jiaqi
    Chen, Haoyang
    Wei, Lesong
    Wei, Leyi
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150
  • [9] ImageDTA: A Simple Model for Drug-Target Binding Affinity Prediction
    Han, Li
    Kang, Ling
    Guo, Quan
    [J]. ACS OMEGA, 2024, 9 (26): : 28485 - 28493
  • [10] Multi-view self-attention for interpretable drug-target interaction prediction
    Agyemang, Brighter
    Wu, Wei-Ping
    Kpiebaareh, Michael Yelpengne
    Lei, Zhihua
    Nanor, Ebenezer
    Chen, Lei
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2020, 110