An Efficient Discrete Model for Implementing Temporal Coding Spiking Neural Network

被引:0
|
作者
Charles, E. Y. Andrew [1 ]
机构
[1] Univ Jaffna, Dept Comp Sci, Thirunelveli, Sri Lanka
关键词
Spiking Neural Networks; Temporal coding; Numerical approximation; COMPUTATIONAL POWER; NEURONS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Spiking neurons, which makes up SNNs are more biologically realistic artificial neurons which convey information by the timing of spikes. SNNs have been applied for various learning tasks and they are capable to perform with improved accuracy in less number of training cycles. Due to the temporal nature a spiking neuron cannot be implemented as a standard neuron. Generally spiking neurons are implemented as a discrete model and the output is computed through an iterative process. Here, each iteration is assumed to take one unit time. Even though the learning models of SNNs can learn in less number of cycles, they consume more computational resources due to the large number of iterations they require. This paper proposes a numerical approach using Newton-Raphson method to estimate the firing time of a spiking neuron in lesser number of iterations. Proposed model was implemented and analysed to test its accuracy, convergence and capability for learning. Tests were performed using the Iris plants dataset and Breast cancer dataset from UCI Machine learning repository. The proposed model was able to find the actual neuron firing time within only a few iterations. Tests have shown that for the proposed approach the required iterations needed to estimate the firing times to an accuracy of two decimal places would be at least 400 fold lesser compared to the standard approach. Number of required iterations found to be independent of the firing time in contrast to the standard approach. The model also found to be smoothly converges in finding the actual firing time. Further the model was tested to cluster Iris and Cancer data sets and the accuracy was found to be 92.7% and 97.4% respectively. The results demonstrate that the limitation of estimating the actual firing time with less computational resources can be resolved using the proposed discrete approach. This would pave way to devise better learning algorithms for SNNs with even higher accuracy and low training cycles.
引用
收藏
页码:74 / 77
页数:4
相关论文
共 50 条
  • [1] A spiking neural network for active efficient coding
    Barbier, Thomas
    Teuliere, Celine
    Triesch, Jochen
    FRONTIERS IN ROBOTICS AND AI, 2025, 11
  • [2] Efficient Spiking Neural Networks With Logarithmic Temporal Coding
    Zhang, Ming
    Gu, Zonghua
    Zheng, Nenggan
    Ma, De
    Pan, Gang
    IEEE ACCESS, 2020, 8 : 98156 - 98167
  • [3] ATC: Approximate Temporal Coding for Efficient Implementations of Spiking Neural Networks
    Han, Ming
    Wang, Ye
    Dong, Jian
    Liu, Heng
    Wu, Jin
    Qu, Gang
    PROCEEDINGS OF THE GREAT LAKES SYMPOSIUM ON VLSI 2023, GLSVLSI 2023, 2023, : 527 - 532
  • [4] A discrete time neural network model with spiking neurons
    Cessac, B.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2008, 56 (03) : 311 - 345
  • [5] Implementing synaptic plasticity in a VLSI spiking neural network model
    Schemmel, Johannes
    Gruebl, Andreas
    Meier, Karlheinz
    Mueller, Eilif
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 1 - +
  • [6] Razor SNN: Efficient Spiking Neural Network with Temporal Embeddings
    Zhang, Yuan
    Cao, Jian
    Chen, Jue
    Sun, Wenyu
    Wang, Yuan
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT V, 2023, 14258 : 411 - 422
  • [7] First-spike coding promotes accurate and efficient spiking neural networks for discrete events with rich temporal structures
    Liu, Siying
    Leung, Vincent C. H.
    Dragotti, Pier Luigi
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [8] Spiking neural network reinforcement learning method based on temporal coding and STDP
    Sboev, Alexander
    Vlasov, Danila
    Rybka, Roman
    Serenko, Alexey
    POSTPROCEEDINGS OF THE 9TH ANNUAL INTERNATIONAL CONFERENCE ON BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES (BICA 2018), 2018, 145 : 458 - 463
  • [9] Effect of Background Noise on Neuronal Spiking Reliability in Temporal coding-based Spiking Neural Network
    Ren, Yanxue
    Deng, Bin
    Hong, Chaofei
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 8538 - 8543
  • [10] Implementing fuzzy reasoning on a spiking neural network
    Glackin, Cornelius
    McDaid, Liam
    Maguire, Liam
    Sayers, Heather
    ARTIFICIAL NEURAL NETWORKS - ICANN 2008, PT II, 2008, 5164 : 258 - 267