Diagnostic classification of schizophrenia by neural network analysis of blood-based gene expression signatures

被引:59
|
作者
Takahashi, Makoto [1 ]
Hayashi, Hiroshi [2 ]
Watanabe, Yuichiro [1 ]
Sawamura, Kazushi [1 ]
Fukui, Naoki [1 ]
Watanabe, Junzo [1 ]
Kitajima, Tsuyoshi [3 ,4 ]
Yamanouchi, Yoshio [3 ,4 ]
Iwata, Nakao [3 ,4 ]
Mizukami, Katsuyoshi [5 ]
Hori, Takafumi [5 ]
Shimoda, Kazutaka [6 ]
Ujike, Hiroshi [7 ]
Ozaki, Norio [4 ,8 ]
Iijima, Kentarou [2 ]
Takemura, Kazuo [2 ]
Aoshima, Hideyuki [2 ]
Someya, Toshiyuki [1 ]
机构
[1] Niigata Univ, Dept Psychiat, Grad Sch Med & Dent Sci, Niigata 9518510, Japan
[2] SRL Inc, R&D Dept, Tokyo 1910031, Japan
[3] Fujita Hlth Univ Sch Med, Dept Psychiat, Aichi 4701192, Japan
[4] Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama 3320012, Japan
[5] Univ Tsukuba, Inst Clin Med, Dept Psychiat, Tsukuba, Ibaraki 3058575, Japan
[6] Dokkyo Med Univ Sch Med, Dept Psychiat, Mibu, Tochigi 3210293, Japan
[7] Okayama Univ, Dept Neuropsychiat, Grad Sch Med Dent & Pharmaceut Sci, Okayama 7008558, Japan
[8] Nagoya Univ, Dept Psychiat, Grad Sch Med, Aichi 4668550, Japan
基金
日本科学技术振兴机构;
关键词
Schizophrenia; cDNA microarray; Artificial neural network; Bioinformatics; Biomarker; D-ASPARTATE RECEPTOR; BIPOLAR DISORDER; MICROARRAY ANALYSIS; POSTMORTEM BRAINS; MENTAL-DISORDERS; DNA MICROARRAY; D-SERINE; PROFILES; CANCER; CELLS;
D O I
10.1016/j.schres.2009.12.024
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Gene expression profiling with microarray technology suggests that peripheral blood cells might be a surrogate for postmortem brain tissue in studies of schizophrenia. The development of an accessible peripheral biomarker would substantially help in the diagnosis of this disease. We used a bioinformatics approach to examine whether the gene expression signature in whole blood contains enough information to make a specific diagnosis of schizophrenia. Unpaired t-tests of gene expression datasets from 52 antipsychotics-free schizophrenia patients and 49 normal controls identified 792 differentially expressed probes. Functional profiling with DAVID revealed that eleven of these genes were previously reported to be associated with schizophrenia, and 73 of them were expressed in the brain tissue. We analyzed the datasets with one of the supervised classifiers, artificial neural networks (ANNs). The samples were subdivided into training and testing sets. Quality filtering and stepwise forward selection identified 14 probes as predictors of the diagnosis. ANNs were then trained with the selected probes as the input and the training set for known diagnosis as the output. The constructed model achieved 91.2% diagnostic accuracy in the training set and 87.9% accuracy in the hold-out testing set. On the other hand, hierarchical clustering, a standard but unsupervised classifier, failed to separate patients and controls. These results suggest analysis of a blood-based gene expression signature with the supervised classifier, ANNs, might be a diagnostic tool for schizophrenia. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:210 / 218
页数:9
相关论文
共 50 条
  • [1] The Correlation-Base-Selection Algorithm for Diagnostic Schizophrenia Based on Blood-Based Gene Expression Signatures
    Zhang, Hang
    Xie, Ziyang
    Yang, Yuwen
    Zhao, Yizhen
    Zhang, Bao
    Fang, Jing
    [J]. BIOMED RESEARCH INTERNATIONAL, 2017, 2017
  • [2] Blood-Based Gene Expression Signatures of Infants and Toddlers With Autism
    Glatt, Stephen J.
    Tsuang, Ming T.
    Winn, Mary
    Chandler, Sharon D.
    Collins, Melanie
    Lopez, Linda
    Weinfeld, Melanie
    Carter, Cindy
    Schork, Nicholas
    Pierce, Karen
    Courchesne, Eric
    [J]. JOURNAL OF THE AMERICAN ACADEMY OF CHILD AND ADOLESCENT PSYCHIATRY, 2012, 51 (09): : 934 - 944
  • [3] Blood-based gene expression signatures distinguish exercise training regimens
    Dungan, Jennifer R.
    Lucas, Joseph
    West, Michael
    Kraus, William E.
    [J]. CIRCULATION, 2008, 117 (11)
  • [4] A New Blood-Based Diagnostic Aid for Schizophrenia
    Kelly, Deanna L.
    Thedford, Sheryl
    Vyas, Gopal
    [J]. PSYCHIATRIC SERVICES, 2011, 62 (09) : 1107 - 1107
  • [5] Assessing the validity of blood-based gene expression profiles for the classification of schizophrenia and bipolar disorder: A preliminary report
    Tsuang, MT
    Nossova, N
    Yager, T
    Tsuang, MM
    Guo, SC
    Shyu, KG
    Glatt, SJ
    Liew, CC
    [J]. AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2005, 133B (01) : 1 - 5
  • [6] Peripheral Blood-Based Gene Expression Studies in Schizophrenia: A Systematic Review
    Wagh, Vipul Vilas
    Vyas, Parin
    Agrawal, Suchita
    Pachpor, Tejaswini A.
    Paralikar, Vasudeo
    Khare, Satyajeet P.
    [J]. FRONTIERS IN GENETICS, 2021, 12
  • [7] Blood-Based Gene Expression Signatures in Non-Small Cell Lung Cancer
    Zander, Thomas
    Hofmann, Andrea
    Staratschek-Jox, Andrea
    Classen, Sabine
    Debey-Pascher, Svenja
    Maisel, Daniela
    Ansen, Sascha
    Hahn, Moritz
    Beyer, Marc
    Thomas, Roman K.
    Gathof, Birgit
    Mauch, Cornelia
    Delank, Karl-Stefan
    Engel-Riedel, Walburga
    Wichmann, H-Erich
    Stoelben, Erich
    Schultze, Joachim L.
    Wolf, Juergen
    [J]. CLINICAL CANCER RESEARCH, 2011, 17 (10) : 3360 - 3367
  • [8] Analysis of blood-based gene expression in idiopathic Parkinson disease
    Shamir, Ron
    Klein, Christine
    Amar, David
    Vollstedt, Eva-Juliane
    Bonin, Michael
    Usenovic, Marija
    Wong, Yvette C.
    Maver, Ales
    Poths, Sven
    Safer, Hershel
    Corvol, Jean-Christophe
    Lesage, Suzanne
    Lavi, Ofer
    Deuschl, Guenther
    Kuhlenbaeumer, Gregor
    Pawlack, Heike
    Ulitsky, Igor
    Kasten, Meike
    Riess, Olaf
    Brice, Alexis
    Peterlin, Borut
    Krainc, Dimitri
    [J]. NEUROLOGY, 2017, 89 (16) : 1676 - 1683
  • [9] Blood-based biomarkers of malignant melanoma by gene expression analysis
    Fujita, M.
    Fujita, J.
    Robinson, S.
    Siconolfi, L.
    Storm, K.
    Bankitis-Davis, D.
    Wassmann, K.
    Edwards, C. K.
    Norris, D. A.
    Robinson, W. A.
    [J]. JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2008, 128 : S225 - S225
  • [10] Predicting autism spectrum disorder using blood-based gene expression signatures and machine learning
    Kim, S. H.
    Kim, I. B.
    Oh, D. H.
    Ahn, D. H.
    [J]. EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2017, 27 : S1090 - S1090