Tuning the Hyper-parameters of CMA-ES with Tree-structured Parzen Estimators

被引:0
|
作者
Zhao, Meng [1 ]
Li, Jinlong [1 ]
机构
[1] Univ Sci & Technol China, Sch Comp Sci & Technol, USTC Birmingham Joint Res Inst Intelligent Comput, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
CMA-ES; Tree-structured Parzen Estimators; Hyper-parameter Selection;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
CMA-ES is widely used for non-linear and non convex function optimization, but tuning the hyper-parameters of CMA-ES is a practical challenge. There are three hyper-parameters c(c), c(1) and c(mu) of CMA-ES, and it is important for the covariance matrix updates to configure their values. Based on the constraints among c(c), c(1) and c(mu), we design a tree structured graph to describe their relationships. We maximize Expected Improvement (El) to search the configuration space of c(c), c(1) and c(mu), which is based on the distribution of solution quality and the conditional distribution of configuration given solution quality. The two distributions are modeled by the Tree structured Parzen Estimators (TPE). We evaluate our approach on the BBOB noiseless problems. The experimental results show that our approach mostly gets a faster convergence towards the optimal solutions when compared with the default CMA-ES and the state-of-the-art algorithm self-CMA-ES.
引用
收藏
页码:613 / 618
页数:6
相关论文
共 50 条
  • [1] Maximum Likelihood-Based Online Adaptation of Hyper-Parameters in CMA-ES
    Loshchilov, Ilya
    Schoenauer, Marc
    Sebag, Michele
    Hansen, Nikolaus
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIII, 2014, 8672 : 70 - 79
  • [3] Multiobjective Tree-Structured Parzen Estimator
    Ozaki, Yoshihiko
    Tanigaki, Yuki
    Watanabe, Shuhei
    Nomura, Masahiro
    Onishi, Masaki
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2022, 73 : 1209 - 1250
  • [4] Multiobjective Tree-Structured Parzen Estimator
    Ozaki Y.
    Tanigaki Y.
    Watanabe S.
    Nomura M.
    Onishi M.
    [J]. Journal of Artificial Intelligence Research, 2022, 73 : 1209 - 1250
  • [5] Research on Automated Reinforcement Learning: based on Tree-structured Parzen Estimators and Median Pruning
    Wang, Zhaolei
    Wang, Ludi
    Liang, Qi
    Luo, Wuyi
    Gong, Qinghai
    Li, Shanshan
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 5461 - 5465
  • [6] Differentiable Architecture Searched Network with Tree-Structured Parzen Estimators for Rotating Machinery Fault Diagnosis
    Liang, Jingkang
    Liao, Yixiao
    Li, Weihua
    [J]. PROCEEDINGS OF INCOME-VI AND TEPEN 2021: PERFORMANCE ENGINEERING AND MAINTENANCE ENGINEERING, 2023, 117 : 959 - 970
  • [7] Optimization of microwave circuit parameters by CMA-ES method
    Hayashi, Kosuke
    Khige, Koichi
    [J]. IEICE COMMUNICATIONS EXPRESS, 2021, 10 (09): : 681 - 687
  • [8] Intelligent fault diagnosis of rotating machinery using lightweight network with modified tree-structured parzen estimators
    Liang, Jingkang
    Liao, Yixiao
    Chen, Zhuyun
    Lin, Huibin
    Jin, Gang
    Gryllias, Konstantinos
    Li, Weihua
    [J]. IET COLLABORATIVE INTELLIGENT MANUFACTURING, 2022, 4 (03) : 194 - 207
  • [9] Accurate Estimation of Analog Circuit Parameters by CMA-ES Method
    Hayashi, Kosuke
    Ichige, Koichi
    [J]. 2020 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP), 2021, : 39 - 40
  • [10] Optimizing Univector Field Navigation Parameters Using CMA-ES
    Baldao, Thayna Pires
    Maximo, Marcos R. A.
    Yoneyama, Takashi
    [J]. 2021 LATIN AMERICAN ROBOTICS SYMPOSIUM / 2021 BRAZILIAN SYMPOSIUM ON ROBOTICS / 2021 WORKSHOP OF ROBOTICS IN EDUCATION (LARS-SBR-WRE 2021), 2021, : 318 - 323